Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Информация о последовательности и анализ структуры и функции

    ИНФОРМАЦИЯ О ПОСЛЕДОВАТЕЛЬНОСТИ И АНАЛИЗ СТРУКТУРЫ И ФУНКЦИИ [c.162]

    По-видимому, уже из этого суждения следует вывод о необходимости изучения законов химической эволюции и законов биогенеза для решения проблемы освоения каталитического опыта живой природы. Небезынтересно в связи с этим напомнить, что даже наиболее оптимистически настроенные химики, которые с успехом моделируют биокатализаторы, все же считают, что они проявили бы легкомыслие, если бы утверждали, что изолированное изучение биокатализаторов— ферментов достаточно для получения исчерпывающей информации о том, что такое биокатализ [ 9, с. 13 . Да, конечно, фермент можно выделить из биосистемы можно точно определить его структуру, во всяком случае не менее точно, чем, например, структуру витамина А или какого-либо стероида. Фермент можно ввести в реакцию и заставить осуществлять каталитические функции. Но, получая фермент в чистом виде и с облегчением выбрасывая остатки исходных материалов, мы жертвуем новым ради привычного — разрушенная клетка со всем ее ферментным аппаратом более интересный объект, чем одна, грубо удаленная деталь (там же). Если в изучении биокатализа идти последовательно, то аналитическая стадия неизбежна. Однако задержка только на этой стадии означает отказ от познания механизма действия ферментативного аппарата в целом. Важно., не останавливаться на данных анализа, — говорит далее Л, А, Николаев,— и попытаться связать в одно целое сведения, относящиеся к деталям. Тогда окажется, что биокатализ нельзя отделить от проблемы биогенеза, и какими бы трудными ни казались эти вопросы, у исследователя остается утешение, что, не теряя их из виду, он все же сделает меньше ошибок, чем если вовсе забудет об их существовании (там же). [c.183]


    В связи с этим нами разрабатывается система функциональной диагностики генетических текстов, которая использует информацию из базы знаний о структуре и функциях генетических сигналов, мощный пакет программ анализа последовательностей ДНК, ИЖ и белков и пакет программ классификации данных. Такая система необходима для эффективного проведения генно-инженерных работ по конструированию молекулярно генетических систем с заданными свойствами, а также для интерпретации данных в теоретических и экспериментальных работах с генетическими текстами. [c.12]

    На сегодняшний день известны структуры более 70 белков. С практической точки зрения эти структуры могут быть использованы биохимиками и фармакологами в качестве моделей при постановке и интерпретации их экспериментов. Цель данной книги — рассмотреть некоторые общие закономерности, которые следуют из анализа и сопоставления известных белковых структур. Эти закономерности необходимы для понимания взаимосвязи между информацией об аминокислотной последовательности белка, хранящейся в ДНК, и его функцией в организме. Кроме того, знание основ облегчит и более широкое использование трехмерных структур белков в научных и практических целях. Сама возможность сформулировать общие для всех белков структурные принципы свидетельствует о существовании однотипного механизма пространственной организации белковых молекул, несмотря на все разнообразие их функций. Для биологической медицины это могло бы означать, что глубокое понимание физиологических и патологических процессов на молекулярном уровне — не утопия и что вполне возможно строго целенаправленное влияние на эти процессы. [c.8]

    Ионообменная хроматография на колонках применяется в трех очень важных областях 1) для качественного и количественного аминокислотного анализа пептидов и белков, дающего ценную характеристику молекул его можно использовать Как средство обнаружения некоторых специфических различий среди белков 2) для определения аминокислотного состава биологических жидкостей, который дает не только существенную информацию о наличии свободных аминокислот, но и позволяет проследить за изменениями, происходящими в организме под воздействием многих факторов, таких, как окружающая среда, физиологическое состояние и генетическая конституция 3) для определения первичной структуры белков — чрезвычайно важной задачи биохимии сегодняшнего дня. Многие исследователи занимаются определением аминокислотной последовательности большого числа разнообразных белков. Это дает возможность установить их химическую структуру и изучить ее взаимосвязь с функцией. [c.8]


    Основная биологическая функция молекулы ДНК состоит, как известно, в хранении и передаче генетической информации, записанной в виде определенной последовательности нуклеотидов в двойной спирали (рис. IX. 16). Поэтому связанное с этим основное требование к структуре ДНК — стабильность и сохранность генов — должно вполне определенным образом сочетаться с конкретными изменениями ее структуры, в частности в процессах взаимодействия с белками. Обычные тепловые флуктуации вызывают структурные изменения ДНК, не приводящие, однако, ни к разрыву водородных связей, ни к изменению межплоскостных расстояний между основаниями. В то же время спираль ДНК сохраняется при тепловых флуктуациях, а также и при более сильных внешних воздействиях. Для оценки потенциальных структурных возможностей ДНК большое значение имеют теоретические методы и модели. Они справедливы и когда необходимо оценить изменение структуры ДНК при ее участии в молекулярно-генетических процессах рекомбинации, репликации и транскрипции. Существует два ряда теоретических методов изучения структуры ДНК методы построения упрощенных физических моделей, основанные на экспериментальных данных и отражающие совокупность свойств целостной молекулы ДНК, и методы конформационного анализа и квантовой химии. [c.217]

    Наиболее заманчиво использовать информацию об аминокислотной последовательности для предсказания третичной структуры белковой молекулы, а отсюда, возможно, и ее функции. Некоторые принципы и положения, применяемые для решения этой задачи, изложены в гл. 5. Здесь мы приведем один результат, который иллюстрирует современное состояние этой области исследования. На рис. 2.14 проведено сравнение трехмерной структуры ингибитора трипсина из поджелудочной железы быка, определенной методом рентгеноструктурного анализа, с модельной структурой, построенной на основании данных об аминокислотной последовательности, в которых использовалась информация о термодинамике взаимодействий между аминокислотными остатками. Исходной считалась вытянутая конформация. Чтобы проследить процесс укладки молекулы, рассчитывали силы, действующие между различными остатками, полученные из данных об энергии их взаимодействия. В результате достигли неплохого качественного согласия между [c.71]

    Началась эпоха интегральных исследований геномов, которые образовали специфический раздел молекулярной генетики - геномику. Геномика сегодня занимается анализом структуры и функций геномов как интегрального функционального массива генов, их регуляторных элементов и других последовательностей, необходимых для функционирования генома. В круг ее интересов входит также анализ появившихся и закрепившихся в геноме паразитических эгоистических элементов, значимость которых для существования и эволюции геномов еще предстоит узнать. Начавшись с исследований генома человека, геномика значительно расширила диапазон своих интересов и включила в них множество модельных организмов - бактерии и дрожжи, нематоду, дрозофилу и мышь, геномы которых исследуются и сравниваются между собой для расшифровки структурных основ их функциональной организации. Возникло единое пространство геномной информации, которое стремительно наращивает свой информационный потенциал. Сравнительный анализ структур геномов различных организмов составляет отправную точку для функциональной геномики, которая призвана определять функциональную значимость вновь определяемых последовательностей. Концепция в гомологии структур зашифрована аналогия функций оказывается весьма плодотворной и помогает устанавливать функции генов человека на основании известных функций генов модельных организмов. Таким образом, современная молекулярная генетика оперирует в едином геномно-информационном поле, где информация о функциях генов в различных организмах интегрируется и распространяется на другие организмы. [c.6]

    Каковы же ближайшие перспективы Можно ли, продолжая изучение Met- и Ьеи-энкефалинов и других пептидных гормонов в том же плане, получить со временем полную и объективную количественную информацию об их структурной организации и зависимости между структурой и функцией Чтобы ответить на этот вопрос, предположим, что такой информацией мы уже располагаем, и попытаемся представить, что она могла бы дать для понимания структурно-функциональной организации энкефалинов и описания механизмов их многочисленных функций. Как можно было бы логически связать данные, например, о 10 низкоэнергетических конформациях каждого нейропептида с приблизительно таким же количеством его функций Очевидно, установить прямую связь при неизвестных пространственных структурах рецепторов не представляется возможным. Число возможных комбинаций, особенно если учесть существование нескольких рецепторов (ц, а,5) для осуществления только одной опиатной функции энкефалина, слишком велико, чтобы надеяться даже в гипотетическом идеальном случае найти искомые соотношения интуитивным путем. Многие полагают, что к достижению цели ведет косвенный путь, заключающийся в привлечении синтетических аналогов, изучении их структуры и биологической активности. В принципе подобный подход вот уже не одно столетие применяется в поиске фармацевтических препаратов. Однако такой путь в его сегодняшнем состоянии не только длителен, сложен и дорогостоящ, но, главное, он не может привести к окончательному решению проблемы. Замена аминокислот в природной последовательности, укорочение цепи или добавление новых остатков, иными словами, любая модификация химического строения природного пептида, неизбежно сопровождается изменением конформационных возможностей молекулы и одновременно затрагивает склонные к специфическому взаимодействию с рецептором остатки, что сказывается на характере внутри- и межмолекулярных взаимодействий, в том числе на устойчивости аналогов к действию протеиназ. Для учета последствий химической модификации на характер внутримолекулярных взаимодействий можно использовать теоретический конформационный анализ и методы кванто- [c.352]


    Анализ последовательностей РНК важен с различных позиций. К настоящему моменту уже определены последовательности более 100 видов тРНК [34], Выяснение последовательности дрожжевой тРНК в сочетании с данными рентгеноструктурного анализа было важным как для определения пространственной структуры этой молекулы (см. рис. 22.1,6 и 22.1,7 в гл. 22.1), так и для подтверждения правильности определения структуры белков. Однако, возникающая возможность изучения взаимосвязи между структурой нуклеиновых кислот и их биологической функцией является даже более важной перспективой. Детальное знание механизмов транскрипции и трансляции во многом зависит от наличия информации о последовательностях разных видов РНК. Простым примером является получение молекул тРНК из их предшественников [c.194]

    Сегодня известны первичные структуры более 2000 белков, причем все возрастающая информация поступает из анализа нуклеотидной последовательности генов. Для тех, кто старается более глубоко понять язык аминокисютных последовательностей, доступен уже огромный материал — обширный текст, который в целом представляет собой существенные фрагменты книги жизни . Что может дать более глубокий его анализ Бесспорно, он совершенно необходим в изучении связи между строением и функцией отдельных представителей пептидно-белковой природы. Но, может быть, он приведет нас к открытию более общего белкового кода , позволит нам в будущем в той нли иной мере пр сказывать свойства белков по их первичной структуре. Это уже можно делать достаточно успешно в отношении пространственной структуры. А биологическая роль Вряд ли природа придумала аминокислотный алфавит из 20 букв случайно. Есть над чем подумать, и все возрастающий поток новых данных по аминокислотным последовательностям отнюдь не делает каждый новый шаг в этом направлении более скучным,— напротив, он воодушевляет нас, рождает новые пути и концепции и вновь и вновь обращает нас к вопросу о тайне химической азбуки живого. [c.81]

    В заключение раздела, посвящеииого анализу последовательности нуклеиновых кислот, следует отметить, что новые методы обеспечили возможность полностью расшифровать строение ряда простейших геномов, к которым относятся бактериофаги < Х174 (5255 звеньев), С-4 (5577 звеньев), Т7 (39 936п.о.),>. (4 592 п. о.), некоторых других фагов и вируса обезьян 8У-40 (5226 л. о.), больших участков генома бактерий, животных, растений и т. п. Эта результаты заставили по-новому взглянуть на структуру и функцию генома и на его эволюцию. И тем не менее сегодня в середине 80-х годов расшифрована еще только очень незначительная часть генетической информации. Общая длина расшифрованных последовательностей составляет всего лишь несколько миллионов нуклеотидных звеньев, а это — только 0,001 длины генома человека. [c.330]

    Первое направление является логическим развитием и, даже можно сказать, завершением основного органохимического направления исследований белковых веществ, а исследования конфигурации белковых веществ начались в результате применения метода дифракции рентгеновских лучей для исследования структуры белков, аминокислот и пептидов. Первоначально, в 30-х годах в обоих этих направлениях преследовалась общая цель — выяснить основные принципы строения белковых веществ. Но по мере того, как начинает выясняться важная роль пространственной организации белковой частицы для проявления ее основных функций, рентгеноструктурный анализ постепенно занимает центральное положение среди мето ов, которые могут дать полную информацию не только о последовательности аминокислот в цепи, но в первую очередь о пространственной конфигурации (третичная структура) образующихся сложных соединений. [c.138]

    Это был первый факт, который свидетельствовал об участии одного белка в сборке трехмерной структуры другого и, следовательно, противоречил (по крайней мере формально) постулатам Ламри и Эйринга и термодинамической гипотезе самого Анфинсена. Долгое время он оставался единственным и практически не замеченным на фоне многочисленных данных о полной ренатурации развернутой белковой цепи in vitro, однозначно подтверждавших положение о том, что вся информация о пространственном строении и функции белка заключена в его аминокислотной последовательности. Однако при постоянно увеличивающемся внимании к проблеме структурной организации белковых молекул, всевозрастающем количестве работ в области обратимой денатурации, разработке новых методов анализа промежуточных состояний и поиске подхода к изучению деталей рибосомного синтеза стали все чаще обнаруживаться факты, указывающие на более сложный механизм сборки белка in vivo, чем это, на первый взгляд, следовало из опытов in vitro. Но и там положение не отличалось большой ясностью. Оказалось, что в искусственных условиях свертывание природных полипептидных цепей не всегда бывает успешным. Лучше всего ренатурируют водорастворимые однодоменные глобулярные белки небольших размеров. [c.411]

    В Отделе исследуется структурно-функциональная организация генома эукариот на примере модельного объекта - плодовой мушки Drosophila melanogaster. Огромная роль этого объекта в расшифровке механизмов функционирования более сложных геномов, включая геном человека, хорошо известна. Работы на дрозофиле заложили основу для развития работ на позвоночных, включая человека, по следующим основным направлениям молекулярной генетики молекулярный анализ генетики развития организма исследование рецепции сигналов окружающей среды роль структуры хроматина в клеточной дифференцировке. Успехи в исследовании геномов позвоночных, основанные на работах, выполненных на дрозофиле, стали стимулом для организации проекта секвенирования генома D. melanogaster, который в значительной степени был завершен в 2000 г. Доступный банк данных нуклеотидных последовательностей предоставил богатейший материал для выяснения функций генов, которые до сих пор не были идентифицированы, а также для анализа этой информации с помощью компьютерных программ. Однако гены, кодирующие белки, составляют только малую часть сложных геномов многоклеточных эукариот. Одной из наиболее важных задач является выявление в не кодирующих белки последовательностях ДНК тех контролирующих элементов, которые определяют правильную экспрессию генов во времени и в отдельных тканях развивающегося организма. [c.11]


Смотреть страницы где упоминается термин Информация о последовательности и анализ структуры и функции: [c.324]    [c.129]    [c.129]    [c.406]    [c.33]    [c.63]    [c.17]    [c.33]   
Смотреть главы в:

Биофизическая химия Т.1 -> Информация о последовательности и анализ структуры и функции




ПОИСК





Смотрите так же термины и статьи:

Информация

Функция анализа



© 2025 chem21.info Реклама на сайте