Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплоотдача прн конденсации паров

Фиг. 41. Теплоотдача при конденсации пара дифенильной смеси и дифенила — дифенильная смесь О — дифенил. Фиг. 41. Теплоотдача при <a href="/info/49607">конденсации пара</a> дифенильной смеси и дифенила — <a href="/info/308491">дифенильная смесь</a> О — дифенил.

    Коэффициент теплоотдачи а в ккал/м час °С при конденсации пара на стенке [c.97]

    Коэффициент теплоотдачи а при конденсации пара в горизонтальной трубке [c.97]

    При конденсации паров с помощью водяного охлаждения на границе стенка—вода существует большое сопротивление процессу передачи тепла, поэтому при конструировании аппаратов необходимо стремиться к тому, чтобы увеличить коэффициент теплоотдачи от поверхности, омываемой водой. В конденсаторах закрытого типа это достигается пропусканием воды через трубки. Оптимальная скорость воды в трубках равна 1,5 м/с. Среднее значение общего коэффициента теплопередачи для конденсаторов, установленных на колоннах, которые разделяют легкие углеводородные смеси, составляет 148,8 ккал/(м2.ч-°С). Для предварительного подогрева сырья в качестве теплоносителя может применяться пар или поток горячих углеводородов, например с низа колонны. Для пара общий коэффициент теплопередачи составляет около 89,3 ккал/(м2-ч-°С), а для углеводородов — 74,4 ккал/(м2-ч-°С). Такое же значение коэффициента теплопередачи можно принимать при расчете холодильников. Если в качестве теплоносителя применяются углеводороды, то оптимальная линейная скорость потока в трубках теплообменника находится н пределах 1,8—2,4 м/с. [c.150]

    Пример 22. Требуется определить коэффициент теплоотдачи при конденсации паров ВОТ (дифенильной смеси) при температуре 360° к сгенкам варочного котла, вертикальная стенка которого (высотой 2 ж) имеет температуру 337° С. [c.98]

    Теплопередача от жидкости к жидкости определяется коэффициентами теплоотдачи от стенок к жидкости. Расчет этих коэффициентов производится по формулам теплоотдачи при нагревании или охлаждении жидкости, движущейся в канале. В качестве определяющего размера при этом принимается эквивалентный диаметр проточного сечения. Теплоотдача пара к стенке рассчитывается по формулам теплообмена при конденсации пара на вертикальных стенах. [c.227]

    Влияние волнового режима течения пленки конденсата на интенсивность теплоотдачи, как уже упоминалось, было теоретически и экспериментально исследовано П. Л. Капицей. Основной результат этих исследований заключается в выводе, что вследствие волнового режима течения пленки коэффициент теплоотдачи при конденсации пара на вертикальной поверхности должен быть выше приблизительно на 20% по сравнению со случаем чисто ламинарного течения, которому отвечает формула (4.15) Нуссельта. Эта поправка была получена П. Л. Капицей при допущении, что изотермическое течение пленки имеет периодический волновой характер. В действительности же наблюдается беспорядочный нестационарный характер волнового движения пленки, обеспечивающий более интенсивное перемешивание жидкости и, как следствие этого, более интенсивную теплоотдачу. Для этих условий, как было показано Лабунцовым [95], поправка на волновое движение зависит от безразмерного комплекса Ке Ка ". Для большинства жидкостей при обычных условиях пленочной конденсации комплекс Ка = [c.128]


    Качество поверхности. При конденсации пара теплоотдача в большой степени зависит от качества поверхности. Если поверхность шероховатая или покрыта слоем окислов, то скорость сте-кания конденсата уменьшается из-за дополнительного сопротивления трения и коэффициент теплоотдачи понижается на 30% и более. [c.90]

    Перегрев пара. При изучении теплоотдачи насыщенного пара следует различать два случая. Если температура стенки выше температуры насыщения пара при данном давлении, то пар не будет конденсироваться, т. е. наблюдается обычное явление теплоотдачи газа (или перегретого пара) к стенке. Если температура стенки ниже, чем температура насыщения пара, то наступит явление конденсации. Однако в данном случае имеет место другое явление, чем наблюдаемое в случае насыщенного пара. При пере- [c.90]

    Для труб первого сверху ряда в пучке коэффициент теплоотдачи I вследствие влияния скорости пара всегда оказывается более высоким, чем коэффициент теплоотдачи н при конденсации неподвижного пара на одиночной горизонтальной трубе. Опытным путем найдено [19, 140], что снижение коэффициента теплоотдачи при конденсации пара на трубах нижележащих рядов происходит в основном-за счет уменьшения скорости пара по мере его конденсации в пучке, а не в результате влияния стекающего сверху конденсата. [c.137]

    При анализе теплоотдачи при конденсации смеси паров решающим является вопрос о том, идет ли речь о конденсации паров смеси веществ, неограниченно взаимно растворимых или нерастворимых либо ограниченно растворимых. В случае конденсации паров взаимно растворимых жидкостей величина коэффициента теплоотдачи будет зависеть от мольной концентрации конденсата и должна устанавливаться в каждом случае экспериментальным путем. Для конденсации паров нерастворимых жидкостей также нельзя вывести точные уравнения, однако на основе измерений, проведенных до настоящего времени, можно применять правила, в соответствии с которыми коэффициент теплоотдачи определяется отнощением [c.96]

    Измерение коэффициента теплоотдачи при конденсации пара ВОТ на горизонтальных трубках показало полное совпадение его с расчетом по формуле Нуссельта расхождение не превышало 15%  [c.309]

    Теплоотдача жидкостей, которые не перемешиваются, происходит благодаря естественной конвекции. Коэффициент теплоотдачи в этом случае вычисляется по формулам, применяемым при расчете естественной конвекции. Коэффициент теплоотдачи конденсирующегося пара (при паровом обогреве) подсчитывается по формулам теплоотдачи при конденсации пара, а при применении жидкого теплоносителя — по формулам теплоотдачи при движении жидкости в каналах. [c.188]

    Теплоотдача на стороне греющего пара рассчитывается по формулам, применяемым для расчета конденсации пара на вер- [c.233]

    Коэффициент теплопередачи при конденсации вторичного пара с ростом вакуума уменьшается, как это явствует из диаграммы, изображенной на фиг. 188, Коэффициент теплоотдачи вторичного пара обычно значительно снижается вследствие загрязнения пара газами, выделяющимися из раствора при испарении, если не принять мер к полному удалению газов. Количество газа, которое необходимо удалить, определить нелегко, так как выделение газов обусловливается многи.чи обстоятельствами. Кроме того, обычно неизвестно количество газа, имеющегося в растворе. Очень часто еще при нахождении сырья -на складе или в процессе самого испарения имеет место протекание целого ряда хими ческих процессов. [c.273]

    Наличие газов и воздуха в значительной степени уменьшает коэффициент теплоотдачи при конденсации пара (юм. гл аву о конденсации, диаграмму на. фиг. 39). [c.273]

    Экспериментальное исследование коэффициента теплоотдачи при конденсации паров ВОТ на вертикальных трубках производилось в двух вертикальных конденсаторах экспериментальной установки. [c.308]

    Фнг. 215. Теплоотдача при конденсации паров ВОТ  [c.309]

    Коэффициент теплоотдачи жидкой дифенильной смеси, движущейся 1П0 трубке, а также коэффициент теплоотдачи при конденсации паров ВОТ меньше соответствующих коэффициентов для воды. Это объясняется большей вязкостью и меньшей теплопроводностью жидкого ВОТ. [c.310]

    Коэффициент теплоотдачи при конденсации паров ВОТ на вертикальных трубках при значениях [c.310]

    Коэффициент теплоотдачи а] при охлаждении жидкости в трубах рассчитывается по формуле (6.7). При конденсации паров в трубах их теплопередающая поверхность определяется методом подбора температуры стенки (см. пример 6.5). [c.187]


    При конденсации пара на наружной поверхности пучка из п горизонтальных труб средний коэффициент теплоотдачи несколько ниже, чем в случае одиночной трубы, вследствие утолщения пленки конденсата на трубах, расположенных ниже а р = = еа. [c.23]

    Более подробные сведения по теплоотдаче при конденсации паров, в частности для турбулентного течения пленки конденсата, можно найти в работе 12]. [c.23]

    Третье явление характеризуется скоростью отвода к охлаждаемой стенке выделяющейся при конденсации теплоты парообразования, имеющей решающее значение для процессов конденсации в теплообменных аппаратах промышленного назначения. При пленочной конденсации пара скорость конденсации определяется только термическим сопротивлением пленки жидкости, поэтому для расчета теплоотдачи достаточно вычислить это сопротивление. [c.121]

    Теплоотдача при пленочной конденсации пара [c.124]

    Для случая конденсации пара на наклонных к горизонту стенках и трубах локальный и средний коэффициенты теплоотдачи оп- [c.126]

    Показано [26], что поперечный поток массы конденсирующегося пара оказывает существенное влияние на теплоотдачу при конденсации и должен учитываться в расчетах. Для случая спутного движения пара при конденсации его на вертикальной охлаждаемой поверхности локальный коэффициент теплоотдачи движущегося пара удовлетворительно описывается уравнением [26]  [c.136]

    Установлено, что при конденсации движущегося пара в пучке горизонтальных труб коэффициент теплоотдачи от пара к стенке зависит в основном от параметров пара, температурного напора и начальной скорости пара Wni на входе в трубный пучок, определяющих коэффициент теплоотдачи в первом ряду труб [c.137]

    Теплоотдача при пленочной конденсации пара внутри труб [c.138]

    Теплоотдача при конденсации движущегося пара внутри горизонтальной трубы. Конденсация пара внутри горизонтальных труб относится к наиболее сложным процессам теплообмена, изученным еще недостаточно как в теоретическом, так и в экспериментальном отношениях. Однако имеющиеся в литературе данные позволяют рекомендовать для приближенных расчетов теплоотдачи некоторые обобщенные зависимости. [c.142]

    Влияние состояния поверхности охлаждения на теплоотдачу при конденсации пара [c.146]

    В табл. 4.2 приведены рекомендуемые [87] поправки на шероховатость и загрязнение к величинам коэффициентов теплоотдачи при конденсации пара на гладкой и чистой поверхности. [c.147]

    Закономерности теплоотдачи у обоих видов конденсации весьма различны. Капельная конденсация отличается очень большими значениями коэффициента теплоотдачи а = 50 000 -=-ч-80 ООО ккал/м час °С, в то время как при пленочной конденсации, вследствие того, что тепло должно быть отведено через пленку конденсата теплопроводностью и конвекцией, средний коэффициент теплоотдачи обычно не превышает величины порядка 6000 ккал1м час°С. На практике встречаются главным образом случаи смешанной конденсации. При конденсации пара, омывающего поверхность конденсации со значительной скоростью, преобладает пленочная конденсация, так как протекающий пар сглаживает очертания отдельных капель. [c.82]

    Исследование конденсации органических и неорганических паров показало, что эти пары, в особенности органические, конденсируются почти всюду в виде пленки. Это легко объяснимо. Из всех веществ, кроме ртути, вода имеет наибольшее поверхностное натяжение, а именно в среднем в 2—3 раза больше того, которое имеют органические вещества, а также масла. Проведенные опыты говорят о том, что теплоотдачу при конденсации паров органических веществ можно с ошибкой, не превышающей 10—207о> считать по уравнению Нуссельта. [c.94]

    Расчет теплоотдачи от жидкого тепл оносителя к стенкам трубок производится по формулам конвективного теплообмена при вынужденном течении жидкости по трубкам. При нагреве насыщенным паром высокого давления применяются формулы для расчета теплоотдачи при конденсации пара в горизонтальной трубке. Условия теплоотдачи внутри сосуда аналогичны предыдущему. [c.191]

    Коэффициент теплоотдачи внутри трубки определяегся при применении жидких теплоносителей по соответствующим уравнениям конвективного теплообмена при паровом обогреве — по формулам теплоотдачи при конденсации пара на стенке, высота которой рав-198 [c.198]

    По сравнению с перегретым паром насыщенный пар, применяемый для обогрева, имеет то преимущество, что при конденсации насыщенного пара может быть получено значительно большее количество тепла, чем при охлаждении перегретого пара. Так, например, ири конденсации 1 кг насыщенного пара с давлением 16 ата и температурой 200,4° С может быть получено 463,1 ккал/кг, в то время как 1ир1и охлаждении перегретого пара с 250 до 200° С получим приблизительно лишь 30,6 ккал/кг. Кроме этого, теплоотдача перегретого пара к стенкам сосуда по сравнению с теплоотдачей конденсирующегося пара невелика. [c.284]

    При конденсации паров в пластинчатом теплообменнике коэффициент теплоотдачи рассчитывается по формуле (6.10), при этом в качестве определяющего линейного размера пр-инимается приведенная длина канала (см. табл. 6.16). По потоку конденсирующегося пара все каналы собираются в один пакет. [c.179]

    Коэффициент теплоотдачи при конденсации пара на гофрированной поверхности пластин при (4онд — ст ) = А < 10 град рассчитывают по формуле (П.22), в которую в качестве высоты поверхности подставляют приведенную длину канала L (см. табл. 11.12). При А 10 град справедлива другая формула [8]  [c.23]

    В отличие от РОКНО в алгоритме РОКК [44] учтена специфика теплоотдачи при конденсации пара между трубами, введены аппроксимации других проектов стандартов. Предусмотрен учет влияния на теплопередачу зон охлаждения пара и переохлаждения жидкости. Обеспечивается выбор оптимальной схемы тока среди комплексов аппаратов восьми видов. [c.295]

    На толщину пленки конденсата влийет скорость ее стенания, так как с возрастанием скорости толщина пленки уменьщается. В свою очередь скорость стекания зависит от вязкости жидкости чем больше вязкость, тем медленнее стекает жидкость. На скорость стекания оказывает влияние также положение поверхности охлаждения. На вертикально расположенных поверхностях пленка стекает быстрее, чем на наклонных и горизонтальных. В нижней части вертикально расположенных поверхностей пленка имеет большую толщину, чем в вышележащих сечениях, потому что сверху стекает вновь образующийся конденсат. Поэтому на вертикальных поверхностях охлаждения теплоотдача конденсирующегося пара в нижней части уменьшается. Это накладывает определенное ограничение при выборе высоты поверхности конденсации. Толщина пленки конденсата зависит, кроме того, от степени шероховатости поверхности охлаждения чем более шероховата поверхность, тем толще будет пленка жидкости вследствие возрастания сопротивления ее стекаиию. [c.122]

    Последний критерий в уравнении (4.8) характеризует влияние на процесс конденсации импульса, вносимого на границу раздела фаз присоединенной массой конденсата. Это влияние незначительно при малых значениях относительной скорости пара Шп.от. и при м п.от О величина импульса также стремится к нулю. При боль ших же скоростях пара влияние импульса на теплоотдачу при конденсации пара становится значительным, и оно должно учиты ваться в расчетах. [c.123]

    Из приведенных обобщенных зависимостей следует, что в случае конденсации пара внутри горизонтальной трубы в условиях малых и умеренных скоростей парового потока и турбулентном течении конденсата средний коэффициент теплоотдачи пропорционален плотности теплового потока в степени 0,5 (а ° ), диаметру трубы в степени 0,2 (а в ) и длине трубы в степени 0,3 (а В диапазоне исследованных давлений пара Рп1 = 0,554-2,5 МПа влияние давления пара на теплоотдачу оказалось несущественным. Это согласуется с аналогичным выводом, сделанным Боришанским и Кочуровой [37] на основе анализа большого числа опытных данных о влиянии давления пара на теплоотдачу при конденсации .  [c.144]

    Теплоотдачу при конденсации пара, когда течение йленки конденсата в основном определяется динамическим воздействием со стороны парового потока, т. е. в условиях высоких скоростей пара и турбулентного режима течения конденсата на большей части длины трубы (за исключением начального участка), исследовали Бойко и Кружилин [36]. В результате теоретического исследования, основанного на аналогии Рейнольдса (аналогии между теплообменом и сопротивлением трения) авторы предложили полуэмпириче-скую формулу для расчета среднего коэффициента теплоотдачи  [c.144]


Смотреть страницы где упоминается термин Теплоотдача прн конденсации паров: [c.217]    [c.308]    [c.172]    [c.383]    [c.33]    [c.121]   
Основные процессы и аппараты химической технологии Кн.1 (1981) -- [ c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсация пара



© 2025 chem21.info Реклама на сайте