Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движение характеристика

    Фильтрация в нефтяных и газовых пластах чаще всего происходит в неустановившихся (нестационарных) условиях. Это означает, нто характеристики движения-скорость фильтрации, давление, плотность изменяются с течением времени. Кроме того, они изменяются от точки к точке, поэтому говорят, что они образуют фильтрационное поле. [c.36]

    Атом представляет собой сложную микросистему находящихся в движении элементарных-частиц. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов. Носителем положительного заряда ядра является п ротон. В ядра атомов всех элементов, за исключением ядра легкого изотопа водорода, входят протоны и н е й тр о к ы. Основные характеристики электрона, протона и нейтрона приведены в табл. 1. [c.8]


    Движение частиц жидкости в каждом пропластке будет определяться по формулам (3.41) для жидкости и (3.43) для газа, в которые подставляются значения пористости т,- и проницаемости k для соответствующего пропластка. Основные фильтрационные характеристики приведены в табл. 3.6. [c.92]

    Онн должны обладать пологой вязкостно-температурной кривой и низкой температурой замерзания. Вязкость является одной из важнейших характеристик гидравлических жидкостей. Чрезмерное уменьшение вязкости при положительных температурах приводит к течи жидкости через различные соединения и уплотнения гидравлической системы, что вызывает потерю давления и замедляет действие агрегатов. Малая вязкость жидкости не позволяет ей предотвращать сухое и полусухое трение деталей гидравлической системы. Высокая вязкость жидкости приводит к увеличению сопротивления движению жидкости по трубопроводам, особенно при низких температурах. [c.212]

    Для понимания особенностей фильтрации жидкости и газа в трещиноватых породах в нефтегазовой подземной гидромеханике рассматри-. вают две модели пород - чисто трещиноватые и трещиновато-пористые (рис. 12.1). В чисто трещиноватых породах (см. рис. 12.1, а) блоки породы, расположенные между трещинами, практически непроницаемы, движение жидкости и газа происходит только по трещинам (на рисунке показано стрелками), т. е. трещины служат и коллекторами, и проводниками жидкости к скважинам. К таким породам относятся сланцы, кристаллические породы, доломиты, мергели и некоторые известняки. Рассматривая трещиноватую породу с жидкостью как сплошную среду, нужно за элемент породы принимать объем, содержащий большое количество блоков, и усреднение фильтрационных характеристик проводить в пределах этого элемента, т.е. масштаб должен быть гораздо большим, чем в пористой среде. Если представить себе блок в виде куба со стороной а = 0,1 м, то в качестве элементарного объема надо взять куб со стороной порядка 1 м. [c.352]

    В колонных аппаратах химической технологии объемная доля дисперсной фазы может изменяться в очень щироких пределах - от нуля до максимально возможной, а скорости движения фаз относительно стенок аппарата имеют, как правило, тот же порядок величины, что и скорость движения частиц относительно жидкости. Поэтому взаимодействие фаз, связанное с их относительным движением, и гидродинамическое взаимодействие частиц между собой оказывают решающее воздействие на характер течения в аппарате. Для математического описания течений такого рода наибольшее распространение в последнее время получила модель раздельного движения фаз, или двухжидкостная модель [92—95]. В ней фазы рассматриваются как два взаимопроникающих и взаимодействующих континуума, заполняющих один и тот же объем [92, 95]. Фазы, составляющие дисперсную смесь, как бы размазываются по объему, занятому смесью, но при этом каждая из них занимает лишь часть этого объема Величина носит название объемной доли (или объемной концентрации) г-й фазы и является одной из основных характеристик дисперсного двухфазного потока. Объемная доля дисперсной фазы д = может называться удерживающей способностью, задержкой, газосодержанием, а объемная доля сплошной фазы ( = 6 -удерживающей способностью по сплошной фазе либо порозностью. Для двухфазного течения всегда <р + = . Приведенная плотность фазы определяется следующим образом  [c.58]


    Магнитное квантовое число. Пространственная ориентация орбиталей. Для характеристики пространственного расположения орбиталей (облаков) применяется третье квантовое число /П/, называемое магнитным. Оно имеет следующие значения О, 1, 2, 3, ..., / и определяет значение проекции орбитального момента количества движения на выделенное направление (например, на ось г)  [c.18]

    V и плотности р) соответствует решению обычной задачи о сильном взрыве при энергии взрыва Е и тех же значениях прочих параметров в некоторый момент 1 = и после взрыва, отвечающий достижению ударной волной радиуса / о. Таким образом, считалось, что при —и <0 происходит обычный сильный взрыв без излучения и выделения энергии на фронте, а при / = О включается излучение или выделение энергии на фронте. При дальнейшей эволюции движения характеристики потока в области непрерывного движения описываются системой уравнений адиабатического движения газа (4.5). На фронте ударной волны условия имеют вид (4.4). Это те же условия, что и в обычной задаче о сильном взрыве однако подчеркнем еще раз, эффективный показатель [c.69]

    После выделения приливных течений остаточные ряды наблюдений обрабатывают с целью анализа сгонно-нагонных движений. Характеристики обеспеченностью 1 раз в л лет определяются расчетным путем. Основными методами определения таких характеристик являются гидродинамическое и вероятностное моделирование с последующей верификацией по материалам наблюдений. [c.32]

    Решая задачу движения несжимаемой сферы газового пузырька в жидкости в поле центробежных сил с наложением гармонической нестационарности, удалось получить зависимость радиуса зависания пузырьков газовой фазы в рабочем колесе АГВ с конкретными конструктивными параметрами в зависимости от физико-химических характеристик газожидкостного потока  [c.139]

    Задача исследования установившегося фильтрационного потока заключается в определении следующих характеристик дебита (или расхода), давления, скорости фильтрации в любой точке потока, а также установление закона движения частиц жидкости или газа вдоль их траекторий и определение средневзвешенного по объему порового пространства пластового давления. [c.62]

    Из установленных Фарадеем законов электролиза вытекало, что электричество, подобно веществу, обусловлено существованием, движением и взаимодействием мельчайших частиц (см. гл. 5). Фарадей вел речь об ионах, которые можно рассматривать как частицы, переносящие элекфичество через раствор. Однако в течение следующего полустолетия ни он и никто другой не занимался серьезно изучением природы таких ионов, хотя работы в этом направлении вообще-то велись. В 1853 г. немецкий физик Иоганн Вильгельм Гитторф (1824—1914) установил, что одни ионы перемещаются быстрее других. Это наблюдение привело к появлению понятия число переноса — характеристики, зависящей от скорости, с которой отдельные ноны переносят электрический ток. Однако даже после того, как химики научились рассчитывать эту скорость, вопрос о природе ионов оставался открытым. [c.118]

    Рассмотрим способы определения основных характеристик потока при плоскорадиальном движении жидкости и газа с большими скоростями, когда причиной отклонения от закона Дарси становятся значительные инерционные составляющие общего фильтрационного сопротивления. [c.81]

    Сравнивая выражения для Сг и С2 в (2.179) с уравнениями характеристик (2.178) системы (2.176), нетрудно установить, что скорости волн с I VI с2 являются линеаризованными вариантами характеристических скоростей. В монографии Уоллиса [94] эти волны называются динамическими. Сопоставляя уравнение движения частиц в (2.177) и выражения для скоростей волн с, и в (2.179), нетрудно заметить, что эти волны, так же как и звуковые волны в газах, определяются взаимодействием инерции и квазиупругой силы сопротивления сжатию (растяжению), которая в данном случае возникает в связи с существованием дополнительного диффузионного потока частиц. С другой стороны, при мы получаем волновое уравнение [c.142]

    Моделирование можно применять для изучения характеристик пластов, содержащих одиночные скважины или группы скважин, для исследования движения и взаимодействия флюидов в пористой среде и т.д. Различные направления применения моделирования пластовых систем приведены на рис. 13.1. [c.372]

    Гидродинамические параметры представляют собой характеристики движения потоков веществ в модели, обусловленные видом [c.45]

    Важная характеристика пламени — его температура. Температура является параметром, характеризующим систему, находящуюся в термодинамическом равновесии. Пламена не относятся к такого рода системам. Экспериментальные методы измерения температуры (методы зондовой и радиационной пирометрии) позволяют получить усредненное значение температуры, характеризующей главным образом энергию поступательного движения частиц в пламени. Методом обращения линии натрия в окрашенных пламенах были получены значения температур для смесей воздуха с топливами прр 0,1 МПа (влажные смеси, комнатная температура) [147]. Отмечается следующая закономерность в понижении расчетной температу- [c.116]


    VI. Характеристика движения реагентов [c.345]

    ВЛИЯЮЩИХ на стесненное осаждение капель и пузырей. Для движения сферических капель в жидкостях при промежуточных значениях критерия Рейнольдса удовлетворительно совпадающей с наибольшим числом имеющихся экспериментальных данных является корре-лящ я, предложенная в работе [130]. Для того чтобы иметь возможность использовать для расчета равновесных гидродинамических характеристик графический метод, изложенный выше, необходимо представить уравнение корреляции (2.59) в виде [c.110]

    Для нахождения динамических характеристик колонных аппаратов по гидродинамическим каналам необходимо знать механизмы распространения и взаимодействия волн концентрации дисперсной фазы в двухфазном потоке. Успехи, достигнутые за последние годы в развитии континуальной модели движения дисперсных смесей, позволяют провести исследование волновых процессов в рамках этой модели, используя различные уровни приближения. [c.113]

    Зависимость фактических антидетонационных свойств рассмотренных образцов автобензина АИ-93, полученных смешением бензина риформинга с октановым числом 95 (ИМ) и изомеризатов, имеющих различную детонационную стойкость, а также смеси изомеризатов с МТБЭ, от скорости движения автомобиля Жигули ВАЗ-2103 представлена на рис. 6.2. Там же приведены дорожные антидетонационные характеристики товарного бензина АИ-93. [c.170]

    Запыленные газы подаются в циклоны через тангенциальные или аксиальные завихрители и совершают внутри аппаратов сложное враща-тельно-поступательное движение, характеристики которого изучены еще недостаточно. На частицы, взвешенные в потоке внутри циклона, действует сила инерции, которая стремится сместить их с криволинейных линий тока по касательным, направленным под некоторым углом вниз и к стенке корпуса. Частицы, соприкасающиеся с внутренней поверхностью стенки, под действием сил тяжести, инерции и опускающегося газового потока скользят вниз и попадают в пылеприемник (бункер). Частицы, не достигшие стенки, продолжают движение по криволинейным линиям тока и могут быть вынесены из циклона газовым потоком, который может захватить и некоторое количество осевших в бункер частиц. [c.185]

    При изучении условий движения мелющих тел и измельчаемого материала выявлено, что вся шаровая нагрузка (рассматриваемая по сечению помольной камеры) при круг овых колебаниях движется по почти правильным концентрическим траекториям в плоскости, расположенной перпендикулярно оси помольной камеры. При этом на периферии помольной камеры при нормальном ускорении машины скорости шаров составляют приблизительно 0,1 м сек. Шары и размалываемый материал находятся в несколько разрыхленном состоянии. Размалываемый материал увлекается в межшаровое пространство при этом средняя скорость движения частиц размалываемого материала, конечно, несколько меньше. Движение измельчаемого материала накладывается на уже упомянутое осевое движение, характеристики которого зависят от частоты и амплитуды колебаний, текучести размалываемого материала и сопротивления мелющих тел прохождению этого. материала. [c.431]

    Разработка нефтяных и газовых месторождений осуществляется не единичными скважинами. Для обеспечения необходимого уровня добычи жидкости или газа нужно определенное количество скважин. Сумма дебитов этих скважин должна обеспечить заданный отбор из месторождения. Поэтому в фильтрационных расчетах, связанных с разработкой месторождний, необходимо рассматривать множество скважин, размещенных определенным образом на площади нефтегазоносности, в зависимости от параметров пластов и свойств насыщающих их флюидов. При этом возникают гидродинамические задачи определения давлений на забоях скважин при заданных дебитах или определения дебитов скважин при заданных из технических или технологических соображений забойных давлениях. Аналогичные задачи возникают при рассмотрении системы нагнетательных скважин, используемых для поддержания пластового давления. В этих случаях также целесообразно схематизировать геометрию движения. При этом рассматриваются наиболее характерные плоские нерадиальные потоки. Проанализировать все возможные геометрии фильтрационных течений на представляется возможным, да в этом и нет необходимости, так как владея общей методологией расчета, можно определить основные характеристики таких потоков. [c.103]

    Другой тормозящий эффект также связан с существованием ионной атмосферы и ее влиянием на движение ионов. Установлено, что образование и разрушение ионной атмосферы протекает с большой, но с конечной скоростью. Характеристикой этой скорости служит так называемое время релаксации Тр, которое можно рассматривать как величину, обратную скорости создания или разрушения ионной атмосферы. Время рела1 сации зависит от ионной силы раствора, его вязкости и диэлектрической ироиицаемости и выражается уравнением [c.122]

    Слепая схема адсорбционной газоочпстптельной установки, состоящей из вентилятора, брызгоуловнтеля, фильтра, адсорбера, конденсатора и сборника отстойника, представлена на рис. 3.8. Показать, какой знак соответствует каждому из этих аппаратов, какие адсорбенты чаще всего используются в газоочистной установке, дать их сравнительную характеристику. С помощью стрелок указать направления движения очищаемого п очищенного газов, СЛ1Ш0В, пара и конденсата. [c.44]

    Каково назначение установки и пропумероваппых ее частей (рис. 18.9) Нанпсать уравнения реакций, проходящих в аппаратах J, 5, 7, н назвать оптимальные условия 1Х протекания. Какие продукты выходит нз аппарата 7 и куда они направляются Стрелками показать направление движения сырья, полупродуктов, указать их физические характеристики. Какова температура в аппарате / и за счет чего она достигается  [c.270]

    Непосредственные наблюдения за движением частиц, взвешенных в турбулентном потоке жидкости около стенки, с помощью ультрамикроскопа, ироде- ланные еще в 1932 г. Фейджем и Тайнендом [8], не обнаружили области, свободной от пульсационного движения. В это же время Мэрфри [9], производя расчеты теплоотдачи при больших значениях числа Прандтля, предпринял попытку учесть характеристики турбулентности в пристеночной области, где течение ранее предполагалось чисто ламинарным. Однако дальнейшее развитие теории массопередачн сильно тормозилось отсутствием экспериментальных данных [c.170]

    Основные закономерности различных режимов движения фаз в идеальных дисперсных потоках были установлены в серии работ Лапидуса и Элджина с сотрудниками [146—151]. Результаты этих исследований получили теоретическое обоснование в работах Уоллиса [94] и Зубера [140] в рамках феноменологической континуальной модели раздельного движения фаз. Для нахождения гидродинамических характеристик движения фаз в различных режимах Уоллис [94] использовал разработанную им модель потока дрейфа. По нашему мнению, подход, основанный на анализе равновесных. состояний моделирующей поток динамической системы, является более общим и наглядным. Элементы такого подхода впервые были использованы в работе [152]. [c.87]

    V Орбитальное квантовое число.уФормы орбиталей. Для характеристики формы орбитали, а следовательно, и формы электронного облака вводится орбитальное или азимутальное квантовое число I, которое имеет значения О, 1,2, 3,. .., [п — 1). Оно отвечает значению орбитального момента количества движения электрона [c.16]

    Как правило, любой макромасштабный процесс является суперпозицией нескольких элементарных процессов переноса и энергосилового взаимодействия. Каждый процесс, в свою очередь, является химическим, физико-химическим, тепловым и/или механическим процессом, связанным с изменениями в пространстве и времени состояния некоторых интенсивных параметров (ф) макропроцесса (температуры, плотности, скорости движения и т. п.). Это неравновесные процессы, и с ними связан спектр характерных временных и пространственных масштабов [436]. Пространственный масштаб 1-й стадии Lf) выступает метрической характеристикой области, в которой изменяется параметр ф. Время 1 , в течении которого изменяется параметр ф в -й стадии, принимается как характеристическое время элементарного" процесса г по параметру ф. Совокупность величин и 1/ представляет собой хронопрост-ранственную метрику г-й стадии по параметру ф. [c.153]

    Основной характеристикой фильтрационного движения служит вектор скорости фильтрации w, который определяется следующим образом. Выберем произвольную точку М пористого пласта, через который фильтруется жидкость, и выделим в нем элементарную площадку А(о tPH . 1.2). Через выделенную площадку в единицу времени протекает масса жидкости AQ (элементарный массовый расход). Проекция вектора w на нормаль к выделенной площадке равна [c.13]

    Но нередко встречаются такие пласты, значительные области которых сильно отличаются друг от друга по фильтрационным характеристикам. Это, так называемые, макронеоднородные пласты, параметры которых существенно влияют на характеристики фильтрационных потоков. При расчетах элементарных фильтрационных потоков в макро-неоднородных пластах также удобно прибегнуть к схематизации геометрии движения и найти такие эквивалентные значения коэффициентов фильтрационного сопротивления, применив которые, можно использовать полученные в предыдущем параграфе формулы для однородного пласта. [c.89]

    Таким образом, характеристики движения в блоках и трещинах оказываются различными давление в блоках р2 больше, чем давление в трещинах р , скорость фильтрации в блоках н 2 значительно меньше, чем в трещинах w . Поэтому трещиновато-пористую среду рассматривают как совмещение двух пористых сред с порами разных масштабов среда 1 - укрупненная среда, в которой роль зерен играют пористые блоки, которые рассматриваются как непроницаемые, а роль поровых каналов-трещины, давление в этой среде р , скорость фильтрации среда 2-система пористых блоков, состоящих из зерен, разделенных мелкими порами, давление в ней р2, скорость фильтрации W2 Таким образом, - среднее давление в трещинах в окрестности данной точки, / 2-среднее давление в блоках и аналогично для скоростей фильтращ1и. [c.355]

    С точки зрения классической механики, обсуждавшейся в разд. У1.1, любая система, состоящая из N частиц, однозначно определяется в том случае, если известно 6Л независимых величпн, а также известны характеристики системы (масса, силовые поля и т. п.). Эти 6Л величин можно рассматривать как 6уУ постоянных интегрирования, подразумеваемых в дифференциальных уравнениях ньютоновского движения. [c.174]

    К основным рабочим характеристикам системы ппевмоподъема относятся грузоподъемность, высота подъема, расход и пачаль-ное давление транспортирующего газа, скорости движения в стволе частиц катализатора и газа. [c.134]

    При феноменологическом подходе структура указанных параметров постулируется на основе более или менее правдоподобных гипотез, а для нахождения коэффициентов, входящих в полученные соотношения, привлекаются экспериментальные данные. Метод осреднения дает возможность конкретнее и более обоснованно установить структуру указанных выше членов, связав их.с параметрами течения на уровне отдельных частиц (мелкомасштабного течения). Однако для того, чтобы связать эти параметры с параметрами осредненного движения фаз, приходится вводить достаточно приближенную схематизацию мелкомасштабного течения, поскольку точное определение локальных характеристик течения дисперсной смеси практически невозможно. Окончательный вид выражений для тензоров напряжений в фазах и силы межфазного взаимодействия в зависимости от способов осреднения и принятых схем мелкомасштабного течения оказывается различным. Кроме того, эти выражения могут быть получены аналитически лишь для предельньгх случаев движения дисперсной смеси, когда сплошная фаза — очень вязкая или идеальная жидкость. Поэтому в дальнейшем для определения структуры указанных выше членов будем использовать в основном феноменологический подход, привлекая лишь в некоторых случаях результаты, полученные аналитическими методами. [c.60]

    Характеристики фазового состояния пар — жидкость в зависимости от температуры нагрева топлив укладывались в оптимальный интервал температур. Дорожные испытания на автомобилях, Дигули марки ВАЗ-2103 с целью оценки фактических антидетонационных свойств бензинов при движении автомобилей на неустановившихся режимах (ГОСТ 10373-75) позволили установить, что образцы, приготовленные на основе фракций изогексановой с октановым числом 91,4 (ИМ) и изопентановой - 92 (ИМ), имеют удовлетворительные фактические антидетонационные свойства. Вовлечение в состав бензина изогексановой фракции с октановым числом 86,9 (ИМ) также приводит к удовлетворительным результатам, в то время как в случае изомеризатов с октановым числом [c.167]


Смотреть страницы где упоминается термин Движение характеристика: [c.54]    [c.14]    [c.28]    [c.26]    [c.61]    [c.45]    [c.54]    [c.67]    [c.3]    [c.106]    [c.114]   
Основы массопередачи (1962) -- [ c.176 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Г лава десятая i НЕУСТАНОВИВШЕЕСЯ ДВИЖЕНИЕ Волновые движения 10-1. Основные характеристики волн

Движение газа с большой скоростью. Приведенные параметры. Безразмерные характеристики диссипации энергии. Вырождение турбулентности, Особенности трансзвуковых течений

Закономерности движения влаги в древесине и характеристика основных процессов сушки

Изменение характеристик движения частиц

Кинематическая характеристика механизма движения каретки

Конструкция и технические характеристики дробилок с простым движением щеки

Краткая характеристика броуновского движения

Общая характеристика инвариантных задач теории нестационарной фильтрации. Автомодельные пологие безнапорные движения при нулевом начальном уровне жидкости

Определения ф Теория ядерного магнитного резонанса ф Влияние молекулярного движения на характеристики ЯМР Способы регистрации ядерного магнитного резонанса

Основные законы и характеристики движения газов

Основные характеристики горизонтальных песколовок с прямолинейным движением воды

Основные характеристики движения жидкостей

Основные характеристики типовых горизонтальных песколовок с круговым движением воды

Поле скоростей при турбулентном движении жидкоУниверсальная характеристика турбулентного потока

Режим движения сточных вод в канализационной сети и гидравлическая характеристика поперечных сечений коллекторов

Уравнения движения. Основные гидродинамические характеристики течений

Фильтрационные характеристики движения двухфазных потоков в пористых средах

ХАРАКТЕРИСТИКИ И СТРУКТУРА ПОТОКА ПРИ ДВИЖЕНИИ ЖИДКОСТИ В КАНАЛАХ

Характеристика внешних пограничных условий движения жидкости

Характеристика ростовых движений

Характеристики внутренних путей движения водяного пара

Характеристики волно- j вого движения. Интерференция и дифракция волн

Характеристики волнового движения. Интерференция и дифракция волн

Характеристики движения частиц в кипящем слое



© 2025 chem21.info Реклама на сайте