Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий источники получения

    Современная технология обеспечивает возможность получения металлического тория высокой чистоты, использующегося в качестве источника атомной энергии. Последнее обстоятельство приводит к необходимости разработки методов определения в нем следов различных примесей, в первую очередь тех, которые обладают большими сечениями захвата нейтронов (бор, кадмий и р.з.э.). Однако такие методы в лите- [c.220]


    Значительные успехи в изучении крупномасштабной диффузии были достигнуты после введения в практику исследования метода меченых флуоресцентных частиц Высокая чувствительность метода достигается путем микроскопического подсчета отдельных частиц цинк-кадмий-сульфида при ультрафиолетовом освещении. По этому методу были проведены опыты в штате Нью-Мексико (см. главу 12) и в Австралии . Аналогичные методы в течение нескольких лет использовались на Британской военно-химической экспериментальной станции в Портоне в связи с метеорологическими исследованиями диффузии льдообразующих аэрозолей, применяемых для искусственного вызывания дождя. Работа, проведенная в Портоне частично касалась изучения горизонтального рассеяния аэрозолей, но основной ее целью было получение надежных данных о вертикальной диффузии. Отбор проб из облака, создаваемого линейным источником меченых частиц, производился приборами, укрепленными на канате привязного аэростата, что позволило получить данные о вертикальном распределении аэрозоля на расстоянии 80 км от источника . Полученные данные указывают на более или менее постоянную концентрацию (по высоте) в конвективных слоях атмосферы и довольно резкий спад у нижней границы высокого инверсионного слоя (в исследованном случае на высоте 1000 м). Кроме того, обнаружено, что в отсутствие конвекции, но без заметной стабилизации атмосферы у земной поверхности вертикальная диффузия может быть очень ап-абой. В двух опытах было установлено, что аэрозольное облако содержалось в основном в слое высотой 600 м над землей, хотя в одном из опытов аэрозоль выпускался на высоте 300 м. Такое медленное вертикальное рассеяние заслуживает тем большего внимания, что при экстраполяции данных по переносу аэрозолей на малые расстояния получилось бы облако высотой 3300 м. Во всяком случае, [c.288]

    Принцип непосредственного превращения химической энергии в электрическую известен с начала XIX в., и его давно применяют в химических источниках тока — гальванических элементах и аккумуляторах. Однако из-за высокой стоимости применяемых в них материалов (цинка, свинца, кадмия и т. д., а также окислов марганца, никеля, серебра, свинца и т. п.) и невозможности непрерывного получения значительных количеств электроэнергии гальванические элементы и аккумуляторы имеют ограниченное применение. [c.151]

    При экстракции дитизоната кадмия хлороформом в качестве маскирующих реагентов использовали ионы С1, Вг и Л. Данные, полученные при экстракции без маскирования из водного раствора, содержащего СЮ -ион, были использованы для расчета константы экстракции К при помощи уравнения (5). После вычисления этой константы появлялась возможность, используя уравнение (14), рассчитать величины рНу, для экстракций с маскированием . Чтобы выполнить эти расчеты, вначале необходимо было иметь величины констант устойчивости комплексов кадмия с маскирующими реагентами. Результаты этих расчетов показаны в табл. 1 вместе с данными, необходимыми для расчетов, и величинами рН /а, которые были получены экспериментально. В табл. 1 включены также величины констант устойчивости маскирующих комплексов и указаны литературные источники, из которых эти величины были взяты. Наклоны кривых экстракции кадмия при 50%-ной экстракции близки [c.145]


    Опытные партии безэлектродных высокочастотных ламп выпускаются отечественной промышленностью. Лампы имеют шарообразную форму, изготовлены из кварца и содержат небольшое количество металла, а также инертный газ при малом давлении, служащий для получения высокочастотного разряда. Диаметр лампы варьирует от 8—10 мм до 16—20 мм. Высокочастотный генератор для их возбуждения имеет небольшие размеры и устанавливается на обычном спектральном рейтере, легко перемещающемся по оптическому рельсу монохроматора. Свойства и особенности шариковых ламп подробно описаны в [267]. Авторы этой работы изучали лампы, излучающие спектры натрия, калия, рубидия, цезия, индия, галлия, таллия, цинка, кадмия, висмута и установили, что пределы атомно-абсорбционного обнаружения элементов при их использовании совпадают с чувствительностью, получаемой при использовании газоразрядных дуговых ламп и ламп с полым катодом. Авторы отмечают высокую стабильность, этих источников света, а также значительную их яркость, что позволяет снизить флуктуации измерительного прибора до 0,5% за счет уменьшения (до 400 в) напряжения, подаваемого на электронный умножитель. Особый интерес представляли экспериментальные образцы шариковых ламп, каждая из которых излучала спектр нескольких элементов. Так, лампа с парами висмута, цинка и кадмия при работе без изменения режима возбуждающего ее генератора позволила определить эти элементы из одного раствора по близкорасположенным линиям поглощения В 223, Сс1 229 и Zn 214 ммк. Пригодными к работе оказались Zn, Сс1-лампа, Са, 2п, Сё-лампа и N3, К, КЬ, Сз-лампа. Трудно переоценить те возможности, которые открывают перед аналитиками безэлектродные многоэлементные лампы. Основные из них — значительное сокращение времени анализа и реальная возможность для осу- [c.22]

    Минералы кадмия в природе не встречаются. Источником для получения его соединений, в частности гидроокиси, служит металлический кадмий, являющийся одним из побочных продуктов цинкового производства. [c.68]

    Ртутные лампы среднего давления (/>-1 атм) более мощны ввиду того, что они излучают в широком диапазоне длин волн в видимой и ультрафиолетовой областях. Две наиболее интенсивные полосы имеют максимумы при 313 и 366 нм, и эти лампы очень удобны для изучения реакций непосредственного фотолиза. Лампы с парами других металлов (например, цинка и кадмия) менее мощны, но часто излучают длины волн, необходимые для определенных экспериментов. Для получения длин волн менее 200 нм широко используют излучение разряда в водороде, криптоне и ксеноне при низких давлениях. В последнее время в качестве источников электромагнитного излучения в ультрафиолетовой, видимой и инфракрасной областях применяют также лазеры. [c.176]

    Использование импульсного разряда позволило получить область короткого ультрафиолета начиная с 1950 А на отечественных приборах ИСП-22/28. Получение достаточно плотного спектра в этой области, несмотря на значительные поглощения излучений, было обеспечено за счет увеличения мощности разряда и подбора более жесткого режима источника возбуждения. Фотографирование спектра осуществлялось на фотопластинках Спектральные , тип III, которые подвергались дополнительной сенсибилизации в 6%-ном спиртовом растворе салициловокислого натра в течение 1 мин. Чувствительность определения элементов в коротковолновой области спектра ориентировочно выражается в следующих порядках цинк, селен, теллур, германий, кадмий, фосфор, серебро, бор — 10 %, мышьяк, сурьма, висмут, углерод, рений, индий, цирконий — 10 %, йод—10 %. [c.76]

    Из сульфидных руд только германитовая руда служит непосредственным сырьем для получения галлия (попутно с германием), основанного на экстракции Ga la эфиром [423]. Однако из-за малой распространенности германит нельзя рассматривать в качестве одного из основных источников получения галлия. Наибольший интерес с этой точки зрения представляют полиметаллические сульфидные свинцово-цинковые руды. При получении из них тяжелых цветных металлов галлий извлекается попутно с другими редкими и рассеянными элементами — кадмием, германием, индием, таллием, рением и др. [c.8]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]


    Основной источник получения кадмия—полиметаллические цинковые руды. Его выделяют из отходов цинкового производства, содержащих 0,2—0,7 % Сё, путем их обработки разбавленной серной кислотой, растворяющей оксиды кадмия и циика. Из раствора кадмий осаждают цинковой пылью. Губчатый остаток (смесь кадмия и цннка) растворяют в разбавленной серной кислоте и выделяют кадмий электролизом этого раствора. Электролитический кадмий переплавляют под слоем едкого натра и затем отливают в слитки. Металл высокой чистоты получают электрохимическим способом, применяя глубокую очистку электролита от микропримесей, перегонкой кадмия и зонной плавкой. Чистота кадмия после такой обработки 99,99995 %. [c.131]

    Извлечение германия из отходов свинцово-цинкового производства. Источником для получения германия на свинцово-цинковых заводах являются различные возгоны или остатки от их выщелачивания (свинцовые кеки.) Отходы цинкового производства — основной источник получения германия в США. Например, на цинковом заводе Игл-Пичер в г. Генриетта (штат Оклахома) пыли от агломерации цинковых концентратов, содержащие германий, подвергаются сернокислотному выщелачиванию. Из раствора цинковой пылью фракционно осаждают медь и германий, оставляя кадмий в растворе. Медно-германиевый осадок отфильтровывают, а раствор передают на извлечение кадмия. Осадок растворяют в серной кислоте, и осаждение цементацией повторяют. Очищенный германиевый концентрат обжигают и обрабатывают соляной кислотой, отгоняя тетрахлорид германия [58]. [c.367]

    Ga (ОН)э амфотерный. Важнейшие соли хлорид и сульфат Г. Основным источником для получения Г. служат отходы алюминиевой и цинковой промышленности. Металлический Г.выделяют из водных растворов его солен электролизом. Используют Г. для изготовления высокотемпературных термометров, Г. может заменять ртуть в вакуумных насосах и выпрямителях. Галлиевые зеркала имеют высокую отражательную способность, они устойчивы при высоких температурах. Применяют Г. в полупроводниковой технике в качестве присадки к германию и в форме интерметаллических соединений (GaAs, GaSb). Легкоплавкие сплавы с цинком, висмутом, кадмием, свинцом и ртутью используют в сигнальных устройствах. Г. и его соединения токсичны подобно ртути. [c.64]

    Первой стадией переработки кадмийсодержащих материалов в процессе, показанном на рис. 27, является конденсация паров кадмия с последующей упаковкой и транспортировкой осадка. Эта стадия не всегда является необходимой, поскольку многие установки по производству кадмия находятся рядом с источником сырья. Однако известны и случаи транспортировки колошниковой пыли. Так, кадмиевая пыль, полученная на цинкоплавильном заводе Нью Джерси в г. Депью, штат Иллинойс транспортировались для извлечения кадмия в г. Пальмертон, штат Пенсильвания. Значительная часть кадмия, производимого в Соединенных Штатах, получается из колошниковой пыли, импортированной с мексиканских плавильных заводов. [c.76]

    Для калибровки спектрометров, определения показателя преломления и других целей широко используются натриевые лампы, В спектрофлуориметрии они применяться не могут, поскольку имеют малый выход света, Эленбаас и Рименс [133] описали множество ламп, используемых для получения атомных спектров. В табл, 16 приведены интенсивности большинства сильных линий, испускаемых кадмиевыми и цинковыми лампами на 25 Вт. Размеры этих источников немного больше, чем размеры ртутных ламп среднего давления на 125 Вт (см, табл. 14), и поскольку интенсивности линий меньше, чем у ртутной лампы (ср. табл. 16 и рис, 56), они применяются только тогда, когда не может быть использована ни одна из ртутных линий. Лампы среднего и высокого давления, содержащие ртуть помимо кадмия и (или) цинка, наиболее часто используются в спектрофлуориметрии. Компактная лампа высокого давления, содержащая ртуть и кадмий, описана Нельсоном [134]. Эти лампы работают на постоянном токе. В табл. 17 приведено типичное для этих ламп спектральное распределение. [c.172]

    Цинк Zn 65,38 9.4 эВ ZnO 4,0 эВ. Цинк относится к числу элементов, атомно-флуоресцентное определение которых очень удобно. Он легко атоми-зируется, для чего пригодны практически все атомизаторы. В спектре флуоресценции цинка содержится практически одна яркая линия резонансная линия Я = 213,86 нм. Она расположена в области, где пламена имеют слабый сплошной спектр. Следствием этого являются очень хорошие пределы обнаружения 10 % [155]. Этот результат получен при атомизации в воздушно-метановом пламени и возбуждении дуговым разрядом в парах цинка. Несколько худшие результаты — 10- %—10 % — получены другими авторами. Ксеноновая СВД-лампа дает относительно плохие пределы обнаружения Ю- %—10- %, что связано, конечно, с малой яркостью этого источника в коротковолновой части спектра. Очень удобно для определения цинка применять бездисперсионные приборы с солнечно-слепым ФЭУ [132]. Абсолютный предел обнаружения цинка так же очень мал — он составляет 0,02 пг. Таким образом, детективность определения цинка уступает только кадмию — 0,0015 пг. [c.98]

    Запатентованы способы получения нлонок кадмия на различных материалах, в основном па металлах, с исполькованием легкодиссоциирующих соединений кадмия [72, 85]. Однако пи конкретных соединений, пи условий осаждения в этих источниках не приводится. [c.219]

    Д.1Я получения каждой спектрограммы служат три электрода, наполненные порошком одной и той же пробы. Спектрограммы получают в результате наложения снимков спектра трех порций пробы. Сила тока дуги равна 5,5 а, папряженпе источника питания — 400 в. Пробу помещают в анод дуги. При этих условиях кадмий улетучпвается из пробы за 10— 15 сек. Общая экспозиция составляет 45 сек. [c.372]

    Вычисление термодинамических характеристик сульфатов кадмия, цинка, меди и свинца проводилось по расчетным уравнениям, приведенным в табл. 1. Правомерность их использования была показана ранее [1]. Термодинамические данные для Hg2S04, воды и металлов, необходимые для расчета, были взяты из известных сводок термодинамических констант [3,4]. Тот же источник был использован и для сравнения полученных нами величин с их определениями, проведенными ранее. [c.150]

    Анализатор типа АЖЭ-11 предназначен для автоматизированного контроля методом вольтамперметрии технологичесик растворов, сточных и оборотных вод, а также обнаружения и индикации в них твердых электрохимических активных частиц. Анализатор обеспечивает измерение содержания ионов тяжелых металлов, свинца, меди, цинка, кадмия, сурьмы, сульфид-иона, хлорид-иона, а также других катионов и анионов, их комплексных соединений. Анализатор с применением вычислительных устройств обеспечивает получение прямых инверсионных дифференциально-импульсных вольтамперньк кривых (ВАК), автоматическую обработку характеристик ВАК (измерение амплитуды, площадей пиков и полупиков), обнаружение и подсчет твердых элекгро-химически активных частиц в жидкостях, программное управление функциями пробоотбора и доставки проб. Пределы измерения по свинцу и кадмию 0-0,1 0-200 мг/дм, соответственно. Питание анализатора — от источника переменного тока напряжением 220 В, частотой 50 Гц, потребляемая мощность 500 В-А. [c.436]


Смотреть страницы где упоминается термин Кадмий источники получения: [c.288]    [c.525]    [c.74]    [c.321]    [c.798]    [c.321]   
Аналитическая химия кадмия (1973) -- [ c.10 , c.23 ]




ПОИСК







© 2025 chem21.info Реклама на сайте