Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий электролитическое

    Большое количество меди можно отделить от кадмия электролитическим осаждением ее на платине в очень сильнокислой среде. [c.314]

    Кадмий Электролитическое покрытие (мшистое) 295 76 0,03.  [c.181]

    Сырьем служит металлический цинк удельная масса 6,9— 7,2 кг/м , температура плавления 419,4 °С, температура кипения 930 °С, теплота плавления 125,1 кДж и теплота испарения 1624 кДж. Нагретый выше 900 °С цинк сгорает зеленоватым пламенем в окись-цинка. Металл, полученный металлургическим методом (марки не ниже Ц-3), содержит 98,7% цинка и до 1,3% примесей (1% свинца и до 0,2% кадмия). Металл, полученный электролитическим способом (марки Ц-0, Ц-1 и Ц-2), содержит до 99,9% цинка и не более 0,1% примесей. Содержание свинца в таком цинке не превышает 0,05% и кадмия 0,02%.  [c.149]


    Долгое время в промышленности был распространен электролитический метод получения железо-кадмиевой губки. В настоящее время активную массу получают более простым, термическим, способом. Кадмий расплавляют в реторте при 700—800 °С, образующиеся пары металла направляют в окислительно-осадительные камеры. Здесь кадмий окисляется кислородом воздуха, и охлажденный высокодисперсный порошок окиси кадмия собирается в бункере. Частицы окиси, увлеченные воздухом из камеры, улавливаются в рукавном матерчатом фильтре. [c.98]

    Электролитическое получение кадмия [c.277]

    Электролитический кадмий КдО содержит 99,99% Сд, Кд1 — 99,9% С(1. [c.279]

    Электролитические покрытия цинком и кадмием применяются для защиты изделий из черных металлов (сталь, чугун) от коррозии. [c.375]

    Температура цианистых электролитов кадмирования колеблется в пределах 20—35 °С. Плотность тока на катоде — от 0,5 до 3,0 А/дм . Катодный выход по току при плотности тока до 3—4 А/дм2 составляет около 90%. Аноды выполняют из чистого электролитического кадмия, содержащего не менее 99,9% d. Анодная плотность тока не должна превышать 2 А/дм . [c.387]

    Таким образом, в случае присутствия кадмия изменение силы тока в зависимости от приложенного напряжения можно выразить кривой, приведенной на рис. 42. При малом напряжении, недостаточном для электролитического выделения кадмия на ртутном катоде, ток практически не идет. При увеличении напряжения до определенной величины начинается резкое увеличение силы тока. Это напряжение характерно для кадмия. Если в растворе присутствуют другие металлы, которые занимают при данных условиях другие места в ряду напряжений, то они будут восстанавливаться при других значениях приложенного напряжения. Поэтому полярографическая волна, т. е. скачкообразное увеличение силы тока, наблюдается при определенном, характерном для каждого металла напряжении тока, приложенного к электродам. Необходимо иметь в виду, что величина этого напряжения сильно зависит от присутствия в растворе других электролитов, а также от того, находится ли определяемый металл в виде хлорида, нитрата, аммиачного комплекса и т. п. Поэтому качественный полярографический анализ возможен только при строго определенных условиях среды. [c.212]

    Количественный полярографический анализ основан на тех же процессах, которые рассмотрены выше для качественного анализа. Испытуемый раствор помещают в электролизер и соединяют электроды с источником тока. При достаточном напряжении начинается электролитическое выделение данного металла, например кадмия на ртутном катоде. Дальнейшее увеличение напряжения приводит к возрастанию силы тока, причем характер зависимости между этими двумя величинами обусловлен некоторыми рассматриваемыми ниже физическими условиями проведения электролиза. [c.212]


    Таким путем определяют медь, свинец, висмут, кадмий и некоторые др. металлы. В качестве катода удобно брать металлическую ртуть, так как образование амальгам облегчает электролитическое выделение многих металлов. С другой стороны, на металлической ртути сильно затруднено выделение водорода, и поэтому легко избежать побочной реакции разложения воды под действием электрического тока. [c.221]

    В книге даны некоторые (разделы электрохимии металлов, не получившие достаточного освещения в учебниках теоретической электрохимии. Изложены теория и практика электролитического получения меди, драгоценных металлов, свинца, сурьмы, олова, никеля, кобальта, железа, цинка, кадмия, марганца, хрома, некоторых редких и рассеянных металлов. Кратко описаны методы электролитического получения особо чистых метал-. лов и проектирования аппаратуры электролиза. Обращено внимание на вопросы снижения расхода электроэнергии, комплексное использование сырья и экономики производства. Приведены соображения о путях развития электролиза в гидрометаллургии Советского Союза. [c.2]

    Электролитическое осаждение кадмия [c.497]

    Электролитическое осаждение кадмия из раствора, периодическое или непрерывное, с применением свинцовых анодов, ведется при значительных концентрациях свободной серной кислоты. При периодическом процессе концентрация кислоты изменяется от 50 до 180—220 г/л, тогда как при непрерывном процессе (с циркуляцией) постоянная кислотность раствора 130—150 г/л. [c.498]

    В отличие от электролитического получения цинка при электролитическом получении кадмия примеси ионов с более элект- [c.499]

    При электролитическом получении индия наиболее распространенными и опасными примесями являются олово и кадмий. Олово, не взирая на более электроположительные его свойства, частично переходит в раствор и осаждается на катоде вместе с индием. [c.556]

    Кадмий, будучи электроотрицательнее индия, при анодном растворении индия, содержащего кадмий, переходит в раствор, и его ионы могут частично восстанавливаться совместно с индием-При электролитическом рафинировании индия, содержащего примеси, рекомендуется вести электролиз при строгом соблюдении постоянства заданного потенциала (см. гл. I, 9). При этом можно получать индий, содержащий десятитысячные доли процента олова, кадмия и железа. Нередко в практике пользуются амальгамой индия в качестве анода. [c.556]

    Метод электролитической очистки может быть применен для получения очень чистых никеля, кобальта, цинка, кадмия, индия и других металлов. [c.581]

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]

    В результате осуществления генеральной Программы партии и правительства по индустриализации страны создана мощная база социалистической электрометаллургии. В настоящее время работают крупнейшие медеэлектролитные заводы, производительность любого из них выше выпуска катодной меди в дореволюционной России. Создана мощная металлургия никеля, располагающая большими цехами электролитического рафинирования никеля и 1собальта. За годы социалистических пятилеток построены и работают заводы электролитического получения цинка и кадмия. Электролитическому рафинированию подвергаются свинец, огово, сурьма, висмут, железо, золото, серебро и другие металлы. [c.11]

    Раствор ни тра та кадмия. Растворяют 2,0000 г металлического кадмия (электролитического) в 50 мл HNO3 (1 1) ири нагревании. После охлаждения раствор переводят в мерную колбу вместимостью 1 л, разбавляют водой до метки и перемешивают. 1 мл раствора содержит 0,002 г d(II) (2 мг/мл). [c.234]

    М КС1 можно определить РЬ(П) ( п = —0,40 В относительно внутреннего серебряного электрода сравнения) в присутствии Ю -кратиого мольного количества d(II) (Еа — —0,60 В относительно того же электрода сравнения), если кадмий электролитически не выделять, и 3-10 -кратного мольного количества, если значение потенциала н подобрано на площадке предельного диффузионного тока d(II). Кадмий же можно определить только, если Срь/Сса 1,5-Ю , и обнаружить, если это отношение ЫО . [c.110]


    Чем прочнее комплекс, тем больше понижается электродный потенциал в растворе комплексообразователя. Благодаря этому можно в комплексных растворах разделять ионы, не разделяемые в простых растворах. Так, например, отделение кобальта от кадмия электролитическим путем затруднетельно из-за близости электродных потенциалов Е°со = 0,28 в, Есв. = 0,40 в. Переводя эти металлы в комплексные цианистые соли Кз[Со(СЫ)б] и Кг[Сс1(С1М)41, можно их легко разделить, так как комплекс кобальта устойчивее комплекса кадмия и поэтому электродный потенциал кобальта в цианистом растворе становится значительно ниже потенциала кадмия, и разделение этих металлов проходит без труда. [c.148]

    При электролизе расплава хлорида иттрия (или смеси Y I3 — Na l) получают сплав из 24% иттрия, 56% магния и 20% кадмия.Электролиз проводят при 700 —800° в графитовом тигле—аноде катодом служит жидкий сплав магния с 25—30%кадмия. Электролитическая ячейка подобна ячейке для электролитического получения скандия (рис. 1). [c.39]

    Электролитическое выделение металла из раствора называется э л е к т р о э к с т р а к ц и е й. Руда или обогащенная руда — концентрат (см. 192)—подвергается обработке определенными реагентами, в результате которой металл переходит в раствор. После очистки от примесей раствор направляют на электролиз. Металл выделяется на катоде и в большпиствс случаев характеризуется высокой чистотой. Этим методом получают главным образом цинк, медь и кадмии. [c.300]

    Использование цинка, кадмия и ртути в технике. Около 40% добываемого цинка используется на цинкование, т. е. покрытие поверхности черных металлов для защиты нх от коррозии. Сам цинк, как у.же указывалось, будучи электрохимически более активным, чем железо, к коррозии вполне. устойчив благодаря образованию на его поверхностп прочной оксидной пленки. Покрытие черных металлов цинком производится различными способами горячим цинкованием, т. е. погружением металла в расплавленный цинк распылением расплавленного циика но поверхности черного металла действием нарами цинка на поверхность черного металла электролитически. Цинковое покрытие даже в случае нарушения его целостности продолжает оказывать на железо защитное действие уже ио электрохимическому ирипиину (см. гл. XX, 12). [c.333]

    В отсутствие НгЗ надежные результаты определения содержания меркаптанов дают потенциометрический [187] и амперометрический методы [188], а также методы титрования азотнокислым се])ебром. В последнем методе можно применять соли кадмия. Амперометрический метод прост, более чувствителен и точен. Весьма перспективным является кулонометрический метод титрования электролитически генерируемыми ионами серебра [189]. Этот метод начинает применяться для полуавтоматического и автоматического контроля качества нефтепродуктов, [c.441]

    Получение металлов высокой чистоты [1]. Цинк марки ЦВ, содержащий 99,99% 2п, и кадмий, содержащий 99,99% С(1, получают дистилляцией катодных металлов. Для получения цинка более высокой чистоты (99,999% 2п) разработан метод переочистки электролитический металл растворяют химически или анодно. При химическом растворении полученные электролиты подвергают глубокой очистке, электролиз проводят в электролизере с диафрагмой и нерастворимыми анодами. При анодном растворении осуществляется двухстадийная очистка вначале проводят анодное растворение обычного промышленного металла и его катодное осаждение, а затем повторное переосаждение полученного металла. [c.279]

    Большое влияние на структуру осадков оказывает комплексообразование йонов. Как правило, при выделении на катоде металлов из растворов некоторых комплексных солей получаются мелкозернистые осадки, особенно при избытке комнлексообразующего лиганда. Характерным примером таких растворов, применяемых для электролитического покрытия металлами, являются растворы цианистых солей меди, серебра, золота, цинка, кадмия и др. Мелкозернистую структуру осадков, получаемых из этих растворов, обычно связывают с величиной катодной поляризации, которая в цианистых растворах при достаточном содержании свободного цианида значительно больше, чем в кислых растворах солей тех же металлов. [c.340]

    Температура электролитов — от 18 до 30 °С. Плотность тока на катоде — в пределах 0,5—1,5 А/дм . Аноды вьшолнены из чистого электролитического кадмия анодная плотность тока примерно равна катодной или несколько ниже ее. [c.387]

    В обычную бюретку, с помощью длинной стеклянной палочки или трубки, кладут сначала небольшой слой стеклянной ваты, а затем слой (около 10 см высотой) металлического кадмия в виде мелких зерен, стружки или электролитического волокнистого металла, В бюретку наливаьэт титрованный растзор соли четырехвалентного титана, который, проходя через слой кадмия, восстанавливается, как в обычном редукторе. Таким [c.371]

    Для наполнения редуктора можно также брать гранулированный цинк. В этом случае при восстановлении часть цинка расходуется на реакцию с кислотой (при чистом электролитическом цинке или кадмии это имеет меньшее значение). Для того чтобы замедлить растворение в кислоте, цинк можно амальгамировать. Для этого зерна цинка погружают на короткое время в 1%-ный раствор Hg l2 или Н (КОз)з, подкисленный разбавленной азотной кислотой. Затем цинк промывают водой и помещают в редуктор. [c.396]

    В ТО же время присутствие в растворе ионов кадмия и свинца — металлов, на которых наблюдается повышенное перенапряжение выделения водорода, мало сказывается на увеличении скорости растворения цинка. Влияние примесей проявляется в том, что атомарные их включения на поверхности металла, образующиеся либо в результате восстайЪвления цинком их ионов из раствора, либо вследствие электролитического осаждения, создают на поверхности цинка участки, на которых в той или иной степени занижено перенапряжение выделения водорода. [c.439]

    В практике электролитическое осаждение кадмия ведут либо при низких плотностях тока (30—50 а/м ), если катоды неподвижны, либо при более высоких плотностях тока 300—400 а/м , если применяют вращающиеся дисковые катоды. Повышению плотности тока препятствует осаждение кадмия в виде рыхлого осадка. Так же, как и при электролизе цинка, применяют алюминиевые катоды и овинцово-серебряные аноды. [c.500]

    Исследования по рафинированию индия, загрязненного оловом и кадмием, А. И. Журина и Ли Хан-гуань (лаборатория ЗЦМ, ЛПИ, 1960) показали, что при электролитическом раство-Зпбосадке, рении ИНДИЯ В растБор пбреходят [c.560]

    Они выгодны тем, что позволяют применять предварительную глубокую очистку растворов, ступенчатую электролитическую очистку металлов в промышленных масштабах с производительностью, измеряемой тысячами тонн в год. С этой точки зрения с электролитическим способом может конкурировать способ дистилляции, однако он приложим только к сравнительно легкоки-пящим металлам, но и в этом случае освобождение перегоняемого металла от некоторых примесей порой чрезвычайно затруднено (цинк от кадмия, сурьма от мышьяка, ртуть от меди и серебра). [c.566]

    В лаборатории института Гипроникель разработан способ электролитического получения никеля чистоты 99,9999% с применением нерастворимого анода. Из раствора N 012, приготовленного растворением карбонильно го никеля, удаляют примеси железа, кобальта, меди и других более электроположительных металлов с помощью электролитической очистки. Окончательную очистку от меди производят дитизоном, а доочистку от железа — купфероном. Экстрактором служат чистые ССЦ или С2Н5О. Электролиз ведут в растворе 150 г/л N1 в виде ЫЮЬ при температуре 70°, п ютности тока 1300 а/м . Катодом служит титан, анодом — чистейший графит. Полученный осадок нагревают в течение нескольких часов в вакууме при 1400°, при этом никель теряет водород, кислород, углерод, а также цинк, олово, кадмий, оставшиеся после электролитической очистки. [c.585]

    Этим требованиям обычно удовлетворяют металлы. При этом лучше применять металлы с высокой степенью окисления, потенциал которых имеет небольшую отрицательную величину если использовать металлы, потенциал которых имеет большую отрицательную величину, происходит сильное выделение водорода. Из этих соображений очень хорошим восстановителем является кадмий, которьгй применяют в редукторе Джонса. Редуктор представляет собой стеклянную трубку, заполненную- стружками электролитического кадмия, через которую медленно протекает восстанавливаемый раствор. В кад- [c.167]

    Запись данных опыта. Написать уравнения реакций получения гидроксида тетраамминкадмия и его электролитической диссоциации. Какое основание является более сильным электролитом гидроксид кадмия или его комплексное основание Ответ обосновать. [c.123]

    Выполнение работы. 1. Приготовить три рабочих раствора I, И и 1П. Раствор I приготовить сливанием равных объемов 0,25 н. раствора dS04 и 0,5 н. H2SO4. Растворы И и III приготовить из раствора I, добавив в него желатин, агар-агар, трибензиламин (или любой другой амин) или высший спирт в таком количестве, чтобы концентрация в растворах поверхностно-активного вещества была разная и равнялась от 0,25 до 1 г/л. 2. Повторить при заданной температуре с растворами I, II и III работу 70. 3. Вычислить фк, фп.к и Афк для гальванических элементов с растворами I, II н ПТ (см. работу 70). Сравнить их друг с другом. 4. Провести электролитическое осаждение кадмия из растворов I, II и III в течение 13--20 мин и плотности тока 5 мА/см . Рассмотреть, используя бинокулярную лупу или металлографический микроскоп, осадки, полученные на катоде при электролизе растворов 1, И и III. Сравнить структуру осадков. 5. Четко записать выводы. Для отчета использовать таблицу по форме, помещенной в работе 69. [c.214]


Смотреть страницы где упоминается термин Кадмий электролитическое: [c.128]    [c.140]    [c.468]    [c.332]    [c.597]   
Химический анализ (1966) -- [ c.349 , c.354 ]

Практическое руководство по неорганическому анализу (1966) -- [ c.300 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.273 ]




ПОИСК







© 2025 chem21.info Реклама на сайте