Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость гидрокрекинга

    Давление является вторым по значимости технологическим параметром процесса каталитического риформинга. Значимость его определяется тем, что снижение давления приводит к увеличению селективности процесса риформинга. Со снижением давления возрастает интенсивность реакций ароматизации, уменьшается скорость гидрокрекинга углеводородов. Как следствие этого - увеличивается выход жидкого продукта и водорода, уменьшается выход лёгких углеводородов С -С4.  [c.12]


    При этом медленнее гидрируются симметричные полициклические ароматические углеводороды (например, пирен) углеводороды линеарной структуры (антрацен) гидрируются значительно быстрее, чем ангулярной (фенантрен) [160, с. 180]. Ниже приведены кинетические данные относительно гидрокрекинга различных ароматических углеводородов при 570 °С и 4,9 МПа —степени превращения ( ), константы скорости гидрокрекинга (к), образования [c.199]

    Следовательно, структура математического описания и ряд его коэффициентов (V/, кинетические параметры гидрокрекинга), для гидроочистки те же, что и для гидрокрекинга. Гидрогенолиз С—8-связей протекает значительно легче, чем гидрогенолиз С—С-связей обработка экспериментальных данных показывает, что константы скорости гидроочистки примерно на два порядка выше, чем константы скорости гидрокрекинга, и энергии активации этих процессов близки. [c.156]

    В соответствии с данными Крейна [3] и нашими [5, 9], можно считать, что отношение констант скоростей реакций разных фракций не зависит от катализатора и что энергия активации одинакова для реакций разных фракций. Разбиваем сырье на три фракции бензольную (60—90 °С), толуольную (90—120 °С) и тяжелую (120—180 °С). Тогда изменение констант скоростей реакций дегидрирования, циклизации и изомеризации с изменением фракционного состава (константы скорости гидрокрекинга от фракционного состава не зависят) можно представить полуэмпирическими уравнениями  [c.342]

    Общее давление и парциальное давление водорода. Для подавления дезактивации катализатора в результате образования на нем кокса нужно проводить риформинг при высоком парциальном давлении водорода. С его повышением снижается термодинамически возможный выход ароматических углеводородов и увеличивается скорость гидрокрекинга, в результате при прочих фиксированных параметрах с увеличением давления снижаются выход жидких продуктов процесса и содержание в них ароматических углеводородов. Одновременно уменьшается выход водорода, так как растет его потребление в реакциях гидрокрекинга. Данные о выходе продуктов риформинга (в %масс.) при получении бензина [c.258]

    Реакции этого типа получили название реакций спаривания . Малая роль реакции спаривания, низкая скорость гидрокрекинга и значительная роль гидрогенолиза кольца в случае триметилцик-логексана могут быть объяснены в рамках этой схемы тем, что распад [c.284]

    При невысоких давлениях концентрация водорода на поверхности катализатора мала, и большое число кислотных активных центров не работает в результате дезактивации коксом. Наложение этих двух факторов приводит к наличию максимума скорости реакции как функции давления. Так, скорость гидрокрекинга на катализаторе с высокой кислотной активностью белого вазелинового масла, выкипающего в интервале 352—485°С, проходит через максимум при 21 МПа (табл. 11.7). [c.300]


    Гидрокрекинг парафинов, з отличие от гидрогенолиза, — одна из основных реакций каталитического риформинга. В результате гидрокрекинга снижается средняя молекулярная масса парафинов, содержащихся в сырье риформинга, что ведет к повышению октанового числа. Так, при равновесном содержании изомерных парафинов переход от С к С 1 приводит к повышению октанового числа на 14—15 единиц [17] (см. рис.. 1.14). С другой стороны, гидрокрекинг сопровождается газообразованием и, следовательно, снижением выхода жидких продуктов риформинга, а значит и уменьшением селективности процесса. Таким образом, скорости гидрокрекинга должны быть ограничены определенными пределами, которые обеспечивают достаточную эффективность каталитического риформинга.. [c.44]

    Скорости гидрокрекинга н-парафиНов значительно возрастают с увеличением числа атомов углерода в молекуле. Так, в [85] показано, что при гидрокрекинге на катализаторе АД-56 константа скорости реакции пропорциональна числу атомов углерода в молекуле н-парафина в четвертой степени  [c.46]

    По этим данным скорость гидрокрекинга н-октана в 3,2 раза больше, а н-нонана — в 5,1 раза больше, чем скорость гидрокрекинга н-гексана. . [c.46]

    Константа скорости гидрокрекинга газойля может быть представлена уравнением  [c.137]

    Сравнение скоростей гидрокрекинга углеводородов различных классов свидетельствует о том, что гидрирование полицикличе-ских структур до углеводородов, содержащих одно ароматическое или одно алициклическое кольцо, происходит быстро. Гидрирование аренов и циклоалканов с разруцеинем последнего кольца протекает сравнительно медленно. Относительно медленно проходит также гидрокрекинг алканов. Таким образом, в продуктах реакции накапливаются производные оноциклических аренов и циклоалканов, а также алканы, преимущественно разветвленные. [c.297]

    Между ростом цепей и их гидрокрекингом существует равновесие, причем скорости гидрокрекинга способствует концентрация хемосорбированного водорода. [c.705]

    Парафиновые углеводороды, содержащиеся в нефтяном сырье, превращаются на катализаторах с высокой кислотной активностью по карбоний-ионному механизму преимущественно с разрывом в средней части молекулы с наименьшей энергией связи С—С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование парафинов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбоний-ионы и инициируют цепной карбоний-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы алканов. Изопарафины с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем нормальные ал-каны. Так как распад карбоний-ионов с отщеплением фрагментов, содержащих менее трех атомов углерода, сильно эндотермичен, при гидрокрекинге почти не образуются метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбоний-ионов, в результате образуются парафины с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализаторах с высокой кислотностью. [c.241]

    В нашей стране освоен промышленный процесс высокотемпературной изомеризации н-пентана в изопентан на катализаторе ИП-62 (платина на фторированной окиси алюминия). Процесс осуществляется в паровой фазе под давлением при циркуляции водородсодержащего газа. Вводимый в реактор водород препятствует отложению кокса на катализаторе и тем самым предотвращает его дезактивацию. Повышение парциального давления водорода приводит к снижению селективности изомеризации из-за увеличения скорости гидрокрекинга. [c.27]

    Из полученных данных можно вывести коэффициенты адсорбции и отношение констант скорости гидрокрекинга и изомеризации. [c.5]

    Скорость гидрокрекинга заметно повышается с увеличением молекулярной массы реагентов, облегчая селективный крекинг нежелательных высокомолекулярных парафиновых угле- водородов. ] [c.778]

    С увеличением молекулярной массы парафинового углеводорода скорость гидрокрекинга возрастает. [c.820]

    Гидрокрекинг парафинов, в отличие от гидрогенолиза, — одна из основных реакций каталитического риформинга. Он сопровождается газообразованием, приводит к повыщению октанового числа риформата и одновременно к снижению выхода жидких продуктов риформинга и по этой причине должен быть ограничен определенными пределами, которые обеспечивают достаточную эффективность каталитического риформинга. Скорость гидрокрекинга парафинов зависит от их парциального давления, парциального давления водорода и растет с увеличением общего давления. [c.829]

    Скорость гидрокрекинга неароматических углеводородов — н-октана и циклогексана — заметно выше по сравнению со скоростью гидродеалкилирования толуола. Отличаются между собой и скорости гидрокрекинга н-октана и циклогексана. У первого она заметно выше. Гидрокрекингу циклогексана предшествует реакция гидрогенолиза с раскрытием цикла. [c.69]

    В реакции н-пентана более 60 мол.% продуктов приходится на этан и пропан метан и бутан образуются не в эквимолекулярном соотношении. Из н-гексана получается преимущественно пропан скорость гидрокрекинга н-гексана при 371° С в 50 раз, при 427° С в 17 раз выше, чем для н-пентана, а кажущаяся энергия активации составляет 15 ккал/моль против 30 ккал/моль для н-пентана и н-бутана. Основным продуктом превращения смеси н-пентана и н-гек-сана также является пропан ( 70 мол.%), а этан получается в значительно меньших количествах, чем при гидрокрекинге одного н-пентана, т. е. н-гексан существенно влияет на направление реакции н-пентана. В то же время последний значительно снижает скорость превращения н-гексана. Очевидно, внутри полостей эрионита имеет место сильное взаимодействие молекул с различной длиной цепи, и ход процесса гидрокрекинга намного более сложен, чем при простом расщеплении связи С — С. [c.199]


    По скоростям гидрокрекинга н-гексан, н-декан и н-ундекан значительно превосходят н-октан. [c.311]

    На катализаторах с высокой кислотной и низкой гидриру — ю цей активностями скорость гидрокрекинга сырья зависит от дсвления более сложно. При невысоких давлениях концентрация водорода на поверхности катализатора мала и часть кислотных его центров не участвует в ионном цикле в результате дезактивации коксом. С другой [c.230]

    При эксплуатации установок гидрокрекинга необходимо учитывать, что в одном и том же температурном диапазоне скорости гидрокрекинга и деасфальтизации зависят от температуры в большей степени, чем глубина обессеривания ([183]. Следует также иметь в виду, что в этом процессе образуются токсичные карбонилы никеля, кобальта и >10либдена [10, 184]. Из них наиболее токсичен №(С0)4 его допустимая концентрация при восьмичасовой работе равна 10 % (масс.). Карбонилы N1 и Мо разрушаюГся при 48 и 149 °С соответственно. В результате выделяется окись углерода, что создает большую опасность для работающих на установке. Поэтому выгрузку катализатора, не прошедшего регенерацию, рекомендуется проводить в следующем порядке прекращать подачу сырья и пропускать через катализатор водо- род или водяной пар для отпарки углеводородов, после чего выключить подогреватель сырья и охлаждать катализатор в токе водорода, азота или водяного пара прекратить подачу пара при достижении температуры катализатора 150°С продуть катализатор азотом не прекращая подачи азота, выгружать катализатор в железные бочки, закрывая их сразу после заполнения. [c.283]

    При изучении группы катализаторов Р1 на алюмосиликате и N1 на А12О3 были определены общая поверхность катализатора, поверхность, занятая металлами, и средний размер кристаллитов. На основании этих данных вычислено расстояние между активными центрами платины, которое оказалось равным примерно 1500 А. Между тем расстояние между кислотными центрами составляет только 10 А. Следовательно, металлические активные центры окружены кислотными. В опытах наблюдалась прямолинейная корреляция между константой скорости гидрокрекинга и величиной поверхности, занятой платиной. Был сделан вывод что роль платины — предотвращение (за счет гидрирования) закоксовывания кислотных центров. Активные центры платины могут защитить только близлежащие кислотные центры, поэтому скорость гидрокрекинга коррелирует с величиной поверхности платины, а не с суммарной поверхностью катализатора. В случае никелевых катализаторов картина осложняется взаимодействием никеля с окисью алюминия и с серой сырья. Но защита кислотных центров — не главная функция гидрирующих центров, основной их ролью является облегчение образования карбониевых ионов (см. стр. 121), т. е. образование олефинов. На гидрирующих центрах, по мнению некоторых [c.126]

    Гидроизомеризация олефинов, т. е. прямое превращение их в изопарафины протекает только на сульфидированном катализаторе. В отсутствие серы идет только миграция двойной связи и диспропорционирование. Если в качестве носителя использовать 810а гидроизомеризация не идет Главные продукты — углеводороды Сз- -С4. Изучено влияние азотсодержащих соединений на скорость гидрокрекинга Присутствие серы понижает кажущуюся энергию активации с 44 до 36 ккал/моль Гексадекан быстрее всего расщепляется до Се-Только после 100%-ного превращения в заметной степени протекают вторичные реакции, приводящие к углеводородам С4—Си (преобладают С7 — Се). Циклизация незначительна (12—16 моль на 100 моль превращенного сырья). и-Гептан дает в основном продукты Сз —С4. У докозана боле заметны вторичные реакции. Гексадецен превращается аналогично гексадекану. Непревращенное сырье изомеризовано Расщепление происходит в основном по центральным связям [c.309]

    Температура. С повышением температуры скорость реакций гидрирования увеличивается. Однако при применяемых обычно да влениях повышение температуры выше 400—420 °С ограничивает возможную степень очистки термодинамическим равновесием гидрирования тиофенов и, вероятно, азоторганических соединений типа хияолииа, бензхинолина и др. Повышение температуры увеличивает скорость гидрокрекинга на алюмокобальтмолибденовом катализаторе, проходящего со значительно более высокой кажущейся энергией активации — 190—250 кДж/моль (45— 60 ккал/моль), чем гидроочистка. Увеличивается также термодинамически возможный и реально достигаемый выход непредельных углеводородов и продуктов дегидрирования полициклических нафтенов. В зависимости от качества исходного сырья и требуемого качества очищенного продукта применяют температуры 250—420°С минимальные температуры применяют тогда, когда недопустимы реакции гидрокрекинга и дегидрирования. [c.269]

    С увеличением молекулярной массы н-парафина скорость гидрокрекинга возрастает. Так, в одинаковых условиях гидрокрекинга при глубине превращения н-октана 53% глубина превращения н-гексадекаяа составляет 95%. Зависимость скорости гидрокрекинга фракций Сб—Сд от средней температуры кипения фракции приведена на рис. 11.2. Из этого рисунка видно также, что степень изомеризации продуктов гидрокрекинга (фракций С4, С5) с утяжелением сырья снижается. Это можно объяснить более высокой скоростью раопада карбоний-ионов с большим числом атомов углерода относительно скорости их изомеризации. [c.278]

    Давление. С точки зрения экономики давление гидрокрекинга должно быть минимальным. Это минимальное значение давления определяется как термодинамическими, так и к инетическими условиями. Скорость гидрокрекинга данного сырья на данном катализаторе определяется температурой процесса, эта температура должна обеспечивать приемлемую скорость реакций. При этой температуре давление должно обеспечивать термодинамическую возможность гидрирования (гидрокрекинга) наиболее полициклических ароматических углеводородов сырья. Из этого следует, что минимальное давление тем выше, чем менее активен катализатор, так как возрастает необходимая температура процесса, и чем тяжелее сырье, так как с ростом числа колец константа равновесия гидрирования уменьшается. При этом весьма важно, что большая термодинамически возможная глубина гидрирования первого кольца полициклического ароматического углеводорода не обязательна, так как расщепление гидрированных колец снимает термодинамические ограничения гидрирования. [c.299]

    Скорость гидрокрекинга парафинов зависит от их парциального давления [78, 85], парциального давления водорода [58] и растет с увеличением общего давления [17]. Данные о влиянии строения парафина на скорость его гидрокрекинга противоречивы. Так, при риформинге на алюмоплатиновом катализаторе изомеров гексана было показано, что скорости гидрокрекинга 2-метил- и 3-метилпентана превышают скорость гидрокрекинга н-гексана соответственно в 3,1 и 2,7 раза [78]. Однако по данным другой работы [80], скорости гидрокрекинга н-нонана, метилоктанов и диметилгептанов на катализаторе риформинга АП-56 приблизительно одинаковы. [c.45]

    Снижение давления, способствуя увеличению селективности реакций ap й aтизaЦии позволяет не толь о по .1 ароматит 1еских Углеводородов но и увеличить выход вьтсокооктанового бензина. Уменьшение давления от 3,5 до 1,5 МПа при каталитическом риформинге фракции 85—180 °С ведет к значительному повышению выхода как риформата с октановым числом 95, так и водорода (табл. 5.2) [77]. При этом возрастает также концентрация водорода в циркулирующем газе. Подобный результат — следствие увеличения скоростей ароматизации и уменьшения скоростей гидрокрекинга углеводородов при снижении давления. [c.146]

    Первые биметаллические катализаторы были приготовлены осаждением платины и рения на хлорированную окись алюминия. На их базе возникло много новых процессов, в том числе ренифор-минг. Биметаллические катализаторы более устойчивы и позволяют работать при сниженных давлениях и повышенных температурах, увеличивают продолжительность циклов без опасности закоксовывания. Другой их характерной особенностью является возможность варьировать в более широких пределах соотношение отдельных реакций, слагающих процесс платформинга. Особенный интерес представляет увеличение скорости ароматизации парафинов при понижении скоростей гидрокрекинга. Заслуживает также внимания, что металлы — промоторы помимо взаимодействия с основным активным компонентом катализатора (большей частью платиной) влияют на селективность процесса, взаимодействуя с носителем (табл. 20). [c.146]

    Скорость гидрокрекинга алканов мало превышает скорость их чисто термического распада. Изомеризация алканов вызывается активным действием катализаторов. Разветвленные осколки легче насыщаются водородом, чем неразветвленные. Это и приводит к накоплению в конечном продукте изоалканов. Глубокий распад алканов нежелателен, так как при этом повышается выход газов, главным образом метана. [c.265]

    На катализаторах с высокой кислотной и низкой гидрирующей активностями скорость гидрокрекинга сырья зависит от давления более сложно. При невысоких давлениях концентрация водорода на поверхности катализатора мала, и часть кислотных его центров не участвует в ионном цикле в результате дезактивации коксом. С другой стороны, при чрезмерном повышении давления возрастает концентрация водорода не только на металлических (гидрирующих), но и кислотных центрах катализатора вследствие спилловера водорода,в результате тормозится стадия инициирования карбкатионно-го цикла через образование олефинов. Наложение этих двух факторов может привести к наличию максимума скорости реакций как функции давления. Так, выходы отдельных фракций гидрокрекинга на катализаторе с высокой кислотной активностью белого вазелинового масла, выкипающего при 350 - 485 °С, проходят через максимум при 21 МПа (табл. 10.19). [c.590]


Смотреть страницы где упоминается термин Скорость гидрокрекинга: [c.319]    [c.138]    [c.139]    [c.300]    [c.210]    [c.41]    [c.301]    [c.381]    [c.815]    [c.17]   
Построение математических моделей химико-технологических объектов (1970) -- [ c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Гидрокрекинг



© 2024 chem21.info Реклама на сайте