Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции ароматизации

    Исследовано влияние давления водорода (в интервале 1—4,9 МПа) на скорость превращения н-гептана в присутствии Pt/A Oa при 490 °С [137]. При этом показано, что порядок реакции ароматизации по водороду при повышении давления стремится в пределе к —2,0. Теми же авторами [138] в безградиентном проточно-циркуляционном реакторе подробно изучена кинетика превращений н-гептана и циклогексана на ряде алюмоплатиновых катализаторов в условиях риформинга (460—520 °С, 1—6,9 МПа) в кинетической области, а также в условиях диффузионного торможения в порах. [c.236]


    Давление является вторым по значимости технологическим параметром процесса каталитического риформинга. Значимость его определяется тем, что снижение давления приводит к увеличению селективности процесса риформинга. Со снижением давления возрастает интенсивность реакций ароматизации, уменьшается скорость гидрокрекинга углеводородов. Как следствие этого - увеличивается выход жидкого продукта и водорода, уменьшается выход лёгких углеводородов С -С4.  [c.12]

    При прочих идентичных параметрах с понижением парциального давления водорода возрастает как термодинамически, так и кинетически возможная глубина ароматизации сырья и, что особенно важно, повышается при этом селективность превращений парафиновых углеводородов, поскольку снижение давления благоприятствует протеканию реакций ароматизации и тормозит реакции гидрокрекинга. [c.188]

    Как выше указывалось, некоторые фирмы США, используя разработанные советскими учеными основы химической кинетики и катализа реакций ароматизации, в том числе каталитической дегидрогенизации цикланов и каталитической циклизации алканов и алкенов, реализовали целый ряд технологических процессов в крупном масштабе. Особенно бурное развитие промышленной ароматизации нефтяного сырья было вызвано войной 1940—1945 гг. в связи с необходимостью расширения производства высокооктановых компонентов и толуола как сырья для синтеза тротила. [c.290]

    Поскольку составляющие суммарный процесс реакции риформинга имеют неодинаковые значения энергии активации — наибольшее для реакций гидрокрекинга (117 — 220 кДж/моль) и меньшее для реакций ароматизации (92—158 кДж/моль), то при повышении температуры в большей степени ускоряются реакции гидрокрекинга, чем реакции ароматизации. Поэтому обычно поддерживают повышающийся температурный режим в каскаде реакторов, что позволяет уменьшить роль реакций гидрокрекинга в головных реакторах, тем самым повысить селективность процесса и увеличить выход риформата при заданном его качестве. [c.187]

    Следовательно, в условиях гидроформинг-процесса реакции ароматизации (циклизации парафиновых углеводородов) должны протекать практически до конца, если давление не выше 20 ат и температура не ниже 430° С. [c.336]

    Под селективностью (избирательностью) катализатора понимается способность его ускорять целевые реакции процесса. Требования максимальной селективности к катализатору риформинга сводятся к обеспечению наибольших выходов жидких продуктов и водорода, т. е. с максимальной глубиной должны протекать реакции ароматизации и минимальной должна быть активность катализатора в реакциях гидрокрекинга и гидрогенолиза. [c.10]


    При повышении температуры возрастает роль реакции ароматизации и гидрокрекинга, увеличиваются выход ароматических углеводо- [c.13]

    Реакции ароматизации парафиновых углеводородов имеют важнейшее значение в процессе каталитического риформинга. Наряду с реакциями ароматизации парафиновые углеводороды подвергаются гидрокрекингу с образованием углеводородов меньшей молекулярной массы. В зависимости от температуры, давления, фракционного и химического состава сырья доля парафиновых углеводородов, превращаемых в ароматические, может быть больше или меньше доли парафиновых, подвергшихся гидрокрекингу. [c.9]

    Изменение объёмной скорости подачи сырья сказывается в большей степени на реакциях гидрокрекинга, чем на реакциях ароматизации углеводородов. Так, если при увеличении объёмной скорости подачи сырья скорость реакций гидрокрекинга уменьшается быстрее, чем скорость реакций ароматизации, то при снижении объёмной скорости наблюдается обратная картина - увеличение скорости реакций гидрокрекинга происходит быстрее, чем реакций ароматизации. Поэтому при снижении объёмной скорости подачи сырья необходимо снижать температуру процесса. Поправка на температуру при изменении объёмной скорости дана на графике рис. 2.15 и не зависит от жёсткости процесса. Работа при объёмной скорости подачи сырья в пределах 1,0-2,0 ч характеризуется минимальной скоростью дезактивации катализатора. Снижение объёмной скорости подачи сырья ниже 1,0 ч также, как и увеличение её выше 2,0 ч приводит к увеличению относительной скорости дезактивации катализатора - при малой объёмной скорости по причине значительного развития реакций гидрокрекинга, при большой объёмной скорости - вследствие увеличения количества пропускаемого через слой катализатора сырья. [c.22]

    Термодинамически наиболее выгодны распад циклопарафинов до элементов и дегидрирование циклопентанов до циклопентадиенов, циклогексанов — до соответствующих ароматических углеводородов. Фактически при термическом разложении циклопарафинов образуются главным образом низшие олефины (этилен и пропилен), метан, этан, бутилен, водород и циклопентадиены. Термодинамически возможные реакции ароматизации и изомеризации в олефины с тем же числом углеродных атомов не протекают. [c.68]

    Увеличение скорости реакций ароматизации нафтеновых и парафиновых углеводородов приводит к увеличению концентрации ароматических углеводородов в жидком продукте - риформате (катализате) и, как следствие этого - к росту октанового числа жидкого продукта. Очень часто в промышленной практике октановое число риформата. называют "жёсткостью" процесса риформинга. [c.6]

    Степень вовлечения парафиновых углеводородов в реакции ароматизации в процессе риформинга можно оценивать глубиной ароматизации и селективностью превращения в ароматические углеводороды. За глубину ароматизации принимаются отношения количества парафинов, превратившихся в ароматические, к общему количеству парафиновых углеводородов в сырье за селективность - отношение количества парафиновых углеводородов, превратившихся в ароматические, к общему количеству превратившихся парафиновых углеводородов. [c.9]

    Температура. Основным регулируемым параметром процесса является температура на входе в реактор. Процесс риформирования проводят в реакторе в интервале температур 480—530 °С. С повышением температуры увеличивается жесткость процесса и ускоряются все основные реакции. Обычно о глубине процесса судят по степени ароматизации парафиновых углеводородов, конверсия которых увеличивается с молекулярной массой. Как влияет температура на превращение углеводородов, показано в табл. 11 113 1. Например образование ароматических углеводородов из нафтеновых уже при минимальной температуре процесса (470 °С) близко к максимальному значению, с повышением температуры прирост их незначителен. В большей мере зависят от температуры реакции ароматизации парафиновых углеводородов. Так, при температуре 470 °С из парафиновых углеводородов образуется всего 11,5% ароматических углеводородов с подъемом температуры до 510 °С их количество возрастает до 22,1%, т. е. увеличивается почти в два раза. Селективность превращения парафиновых углеводородов в ароматические мало зависит от температуры (44,8% при 470 °С и 49,4% при 510 °С), т. е. температура [процесса [c.21]

    Эта реакция является обратной по отношению к реакции ароматизации н-парафинов. Так как [c.300]

    Установлено, что выход целевого продукта процесса может быть существенно увеличен, если бензиновая фракция последовательно контактирует с катализаторами АП-64 и СГ-ЗП. При этом на катализаторе АП-64 наряду с реакциями ароматизации происходит изомеризация значительной части содержащихся в сырье нормальных парафиновых углеводородов. [c.6]

    Газосырьевая смесь проходит конвекцию печи тремя параллельными потоками, затем двумя потоками одну секцию и одним потоком 12 труб второй секции печи П-1 и с температурой 470-530 °С (поз. ТКС 15) входит в реактор Р-1. В реакторе Р-1 сырье в паровой фазе в атмосфере водорода над катализатором подвергается ароматизации. Реакции ароматизации бензина над катализатором протекают с поглощением тепла, вследствие чего температура на выходе из реактора Р-1 снижается на 60 С, в зависимости от активности катализатора. [c.45]


    К числу наиболее медленно протекающих относятся реакции ароматизации парафиновых углеводородов. Поскольку превращение парафиновых углеводородов в ароматические дает наибольший эффект повышения октанового числа бензина, совершенствование процесса каталитического риформинга связано с решением проблемы повышения скорости и селективности этих реакций. [c.121]

    Полученные данные объясняются конкурентным, параллель-но-консекутивным механизмом реакций ароматизации и гидрокрекинга, гидродеалкилирования, гидрогенолиза и Н-переноса. [c.151]

    Согласно последним работам, большое значение в реакциях ароматизации парафиновых углеводородов имеет содержание хлора в катализаторе и положительный заряд платины. [c.165]

    Реакции ароматизации и конденсации состоят, напротив, в образовании ароматических групп, все более и более расширяемых одновременно путем дегидрогенизации (следовательно ароматизации) насыщенных колец и соединения ароматических групп между собой путем образования ароматических связей С—С. Эти реакции освобождают водород и приводят к образованию твердого остатка угле- [c.80]

    Суммарный тепловой эффект риформинга складывается из тепла экзотермичных реакций гидрокрекинга и эндотермичных реакций ароматизации (дегидрирования и дегидроциклизации). С повыще-Н ием содержания в сырье нафтеновых углеводородов роль гидрокрекинга при получении катализата заданного качества снижается и эндотермичность процесса растет. С увеличением глубины риформинга концентрация циклопарафинов снижается, а парафинов вследствие меньшей скорости реакций повышается, поэтому повышается и роль реакций гидрокрекинга в результате эндотермичность процесса снижается. В зависимости от качества сырья и катализата тепловой эффект может изменяться в очень широких пределах— от —210 до —840 кДж/моль (От —50 Ьо —200 ккал/кг) сырья. [c.258]

    Как ВИДНО ИЗ табл. 10.5, в условиях каталитического рифор — мин1а наиболее легко и быстро протекают реакции дегидрирования гомологов циклогексана. Относительно этой реакции скорость аро — мати зации из пятичленных нафтенов примерно на порядок ниже. Наиболее медленной из реакций ароматизации является дегидро — циклизация парафинов, скорость которой (на два порядка ниже) лимитируется наиболее медленной стадией циклизации. [c.179]

    Реакции ароматизации и поликонденсации до кокса, протека — ющ1е при каталитическом крекинге, в процессах гидрокрекинга, про водимых при высоком давлении водорода и пониженных темпе — рату рах, сильно заторможены из-за термодинамических ограничений и гидрирования коксогенов посредством спилловера водорода. [c.225]

    Как видно из кривых рис. 2.6, полученных при риформинге широких бензиновых фракций 85-180 °С и 62-180 °С, влияние температуры на селективность превращения парафинов в ароматику имеет криволинейный характер. Селективность минимальна в области температур 480-490 °С (входные температуры в реакторы, как правило, на 10 ° выше). Снижение температуры ниже 480 °С приводит к увеличению селективности, также как и увеличение выше 490 °С, что объясняется изменением соотношения скоростей реакций ароматизации и гидрокрекинга в пользу первых. [c.12]

    Дегидроизомеризация метилциклопентана в бензол на ряде Pt-катализаторов изучена в интервале температур 250—500 °С и атмосферном давлении [50]. Показано, что Pt, нанесенная на пористое стекло или на предварительно обработанный кислотой гель кремневой кислоты, проя>вляет достаточно высокую активность в реакции ароматизации метилциклопентана. Полагают [50], что ароматизации метилциклопентана предшеству- [c.195]

    Изучена взаимосвязь между каталитической активностью Rh-содержащих катализаторов (Rh/SiOa и КЬ/А120з) и дисперсностью металлической фазы [79, 80]. Показано, что активность этих катализаторов в реакции ароматизации н-гептана хорошо коррелирует с концентрацией низкокоординированных атомов Rh, расположенных на ребрах и углах кристаллов. Дисперсность и концентрацию поверхностных атомов Rh с различной координацией рассчитывали по хемосорбции Hj и СО и результатам Нг—Оз-титрования, предполагая, что кристаллиты Rh имеют форму гранецентрированного октаэдра. [c.201]

    Температура промышленных процессов риформинга обычно находится в интервале 450—530°С. С повышением температуры ускоряются все основные реакции. При этом рассмотрение кинетики процесса затрудняется параллельно протекающими разнородными реакциями (ароматизации, гидрокрекинга и др.), во многом зависящими от температуры в реакционной зоне аппарата. Как было показано выше, процесс риформирования в целом эндотермичен и требует межступенча-того подогрева газосырьевого потока. Температурный режим реакторов промышленных установок близок к адиабатическому. [c.13]

    Первым катализатором риформинга был алюмомолибденовый катализатор (М0О3/А1 О3), который катализировал реакции ароматизации, изомеризации и гидрокрекинга углеводородов. Однако он отличался низкой селективностью и высокой скоростью закоксовывания. Тем не менее, это не явилось препятствием для промышленного использования алюмомолибденового катализатора во время второй мировой войны в производстве толуола и компонентов авиационных бензинов. В конце 40-х годов стали применять более эффективные платиновые катализаторы, а в последующие годы широкие исследования привели к созданию разных их модификаций. [c.3]

    Реакция ароматизации бензина протекает с отрицательным тепловым эффектом, вследствие чего темцература в реакторе снижается. Для проведения каталитического риформинга низкооктанового бензина при заданных температурах предусматривается ступенчатый реакторный блок и межступенчатый подогрев продуктов реакции в трубчатых печах. Реакторный блок состоит из трех реакторо% каталитического риформинга и двух печей для подогрева продуктов реакции. [c.203]

    Известно [11], что на скорость реакций ароматизации при нлат-форминге влияет размер зерна атализатора и что эти реакции тормозятся внутренним транспортом. Однако выбранные формы кинетических уравнений справедливы и для внутридиффузионного режима. Наложение внутреннего транспорта изменит лишь значения постоянных коэффициентов йо и Е, но не вид функциональной зависимости [И]. Это обеспечивает большую гибкость выбранных форм кинетических уравнений. [c.341]

    В ППО Леннефтехим был разработан металлоцеолитный катализатор, обладающий высокой активностью в реакциях ароматизации углеводородов и гидрокрекинга нормальных парафиновых углеводородов. При переработке бензинов на металлоцеолитном катализаторе наблюдается высокая селективность превращения нафтеновых углеводородов в ароматические и процесса гидрокрекинга парафиновых углеводородов нормального строения, а реакции гидролиза пятичленных нафтеновых углеводородов и гидрокрекинга изопарафиновых углеводородов, характерные для традиционных катализаторов риформинга на основе оксида алюминия, протекают весьма слабо [121-123,128,129]. [c.28]

    Металлоцеолитный катализатор обладающий высокой активностью в реакциях ароматизации 1 леводородов, впервые был разработан в НПО Леннефтехим [121-124]. При переработке бензинов на этом катализаторе наблюдается высокая селективность превращения нафтеновых углеводородов в ароматические и гидрокрекинг парафиновых углеводородов нормальною строения, а реакции гидрогенолиза пятичленных нафтеновых углеводородов и гидрокрекинга изопарафиновых углеводородов протекает весьма слабо. [c.112]

    Для изучения влияния условий риформирования на показатели процесса и качество катализата первой стадии были проведены опыты при давлении 3.0 МПа., циркуляции водородсодержащего газа 1200 нл/л сырья и объемной скорости подачи сырья 3 и 5 час Результаты опытов приведены в таблице 5.8. гам же приведена характеристика исходного сырья. В изученных условиях риформирования протекают реакции ароматизации, изомеризации и гидрокрекинга в результате выход парафиновых углеводородов нормального строения снижается до 15,0-20,9% мае. в сравнении с содержанием их в сырьс 25,8%о мае., т.е. на 4,9-10,8% мае. Уменьщение выхода н-парафиновьгх углеводородов объясняется не только их гидрокрекингом и дегидроциклизацией, но и их изомеризацией, поскольку выход жидких продуктов превыщает 90%> мае. 1 аким образом, на платиноэрионитный катализатов СГ-ЗП при комбинированной переработке может постпупать сырьё, содержащее на 5-1% мае. меньще н-парафиновых углеводородов, чем в исходном сырье, что с учетом выхода жидких продуктов первой стадии должно повысить суммарный выход стабильного катализата на 3-5%о мае. Экспериментальная проверка данного вывода была осуществлена на пилотной установке с двумя последовательно соединенными реакторами, работающими в едином циркуляционном контуре. [c.130]

    Технологический режим. Основные технологические параметры риформинга — объемная скорость подачи сырья, давленпе, кратность циркуляции водородсодержащего газа, максимальная температура процесса, а для установок с движущимся слоем катализатора — производительность узла регенерации, выбираются при проектировании установок. Объемная скорость подачи сырья составляет 1,5—2 ч- . Частные объемные скорости по ступеням реакции, число ступеней (обычно в пределах 3—5) выбираются с учетом качества сырья и требований к качеству катализата. Для современных установок характерно неравномерное распределение катализатора по реакторам. Для трехреакторного блока распределение катализатора составляет от 1 2 4 до 1 3 7, для четырехреакторного она может быть, например, 1 1,5 2 5 5. Снижение скорости подачи сырья приводит к уменьшению селективности процесса, понижению выхода катализата н водорода, повышению выхода углеводородно/о газа, снижению концентрации водорода в циркуляционном газе. Снижение рабочего давления риформинга повышает селективность процесса (рис. 2.2.3), способствуя реакциям ароматизации п. подавляя гидрокрекинг. Однако при снижении давления увеличивается скорость дезактивации катализатора за счет накопления на нем кокса (рис, 2,24, а). Первые промышленные установки каталитического риформинга были рассчитаны на рабочее давление 3,5—4 МПа. Применение стабильных полиметаллических катализаторов позволило снизить давление до 1,5—2 МПа на вновь проектируемых установках с неподвижным слоем катализатора и до 0,7—1,2 МПа на установках с движущимся катализатором. На действующих установках риформиига замена алюмоплатиновых катализаторов на полиметаллические позволяет снизить рабочее давление с 3,0— [c.132]

    Процесс деалкилирования с водяным паром аквадель (НПО Ленне( яехнм — Французский институт нефти). В качестве сырья используются фракции ароматизованных бензинов пиролиза и риформинга. Селективность образования бензола может превышать 100% (мол.), так как наряду с деалкилированием алкилбензолов протекают реакции ароматизации насыщенных углеводородов. [c.277]

    Pt-Ir -катализатор обладает большей активностью и селективностью в реакциях дегидроциклизации парафинов и меньшей активностью в реакциях ароматизации нафтенов, по-видимому, из-за влияния геометрического фактора и коксообразования. По активности и стабильности Pt-Ir/Al20 превосходит не только АПК, но и Р1-Не/А1г(3 (рис. 6.13). Высокая стабильность катализатора K-Ir/AljOj обусловлена ни4кой скоростью коксообразования, которое подавляется даже при незначительном содержании иридия. [c.154]

    Общими для всех установок риформинга являются большой эндотермический тепловой эффект, который вынуждает вести процесс в трех-четырех реакторах с двумя-тремя промежуточными трубчатйми подогревателями, и разные скорости реакций ароматизации, селективности превращения различных групповых компонентов сырья. [c.156]

    Но с повышением темшературы константа равновесия дегидро-циклизации увеличивается в большей степени, чем дегидрогенизации, так как тепловой эффект первой реакции приблизительно 42 кДж/моль (10 ккал/моль) выше. Ниже приведены констангь л равновесия реакций ароматизации циклогексана и н-гексана, и-гс-люстрирующие это положение  [c.249]


Смотреть страницы где упоминается термин Реакции ароматизации: [c.105]    [c.183]    [c.187]    [c.190]    [c.323]    [c.18]    [c.120]    [c.123]    [c.137]    [c.165]   
Смотреть главы в:

Установление структуры органических соединений физическими и химическими методами том 2 -> Реакции ароматизации


Основные начала органической химии Том 2 1957 (1957) -- [ c.215 , c.222 , c.223 ]

Основные начала органической химии Том 2 1958 (1958) -- [ c.215 , c.222 , c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматизация



© 2024 chem21.info Реклама на сайте