Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спилловер

    По аналогии с механизмами реакций, осуществляемых в процессах каталитического риформинга на платине (см. 10.2.2) и паровой конверсии углеводородов ( 9.1), можно предположить, что реакции гидрогенолиза гетероатомных углеводородов на АКМ и АНМ катализаторах потекают также многостадийно через хемо — сорбцию реактантон на активных центрах как кобальта (никеля), так и молибдена. При этом на кобальте (никеле) осуществляются активация Н и спилловер атомарного активного водорода, а на молиб — [c.211]


    Платина и ее металлические сплавы являются активными катализаторами окисления углеводородов и кокса. Горение кокса на АПК и полиметаллических катализаторах протекает со скоростью на два порядка выше, чем на АСК и А12О3. Процесс идет в диффузионной области с большим тепловыделением, особенно при выгорании алкильных цепочек кокса. Во избежание местных перегревов и спекания пла-. тины процесс искусственно тормозят и проводят в три этапа, ограничивая температуру и подачу кислорода в смеси с азотом. На первом этапе выжиг ведется при температуре 250- 350 С и концентрации кислорода 0,5%, на втором этапе при 350-450 С и 1% и на третьем, заключительном этапе при 450- 510 С и 3- 5% соответственно. Благодаря ступенчатому выжигу кокса, по длине слоя и диаметру зерна катализатора наблюдается перемещение горячего пятна зоны горения. Вначале окисляются непредельные углеводороды, адсорбированные на металлических центрах,, а затем - углеводороды, оставшиеся в системе. Длительность этого "мокрого этапа зависит от тщательности подготовки системы и может колебаться от нескольких часов до нескольких дней. Второй этап обусловлен горением коксогенов и кокса, находящихся вблизи металлических центров за счет спилловера ароматизированного кислорода. В продуктах горения этих соединений образуется много воды и меньше СО2. На завершающейся сухой стадии регенерации выгорает высококарбонизированный кокс, так называемый остаточный, глубинный, бедный водородом, расположенный на наибольшем расстоянии от металлических центров и источника подачи кислорода. Уменьшить неравномерность температур в слое и одновременно интенсифицировать процесс горения кокса можно уменьшая концентрацию кислорода при одновременном повышении давления в системе и увеличивая кратность циркуляции газовой смеси. [c.166]

    Реакции ароматизации и поликонденсации до кокса, протека — ющ1е при каталитическом крекинге, в процессах гидрокрекинга, про водимых при высоком давлении водорода и пониженных темпе — рату рах, сильно заторможены из-за термодинамических ограничений и гидрирования коксогенов посредством спилловера водорода. [c.225]

    По аналогии с механизмами реакций, осуществляемых в процессах каталитического риформинга на платине (см. 10.2.2) и паровой конверсии углеводородов ( 9.1), можно предположить, что реакции гидрогенолиза гетероатомных углеводородов на АКМ и АНМ катализаторах протекают также многостадийно через хемосорбцию реактантов на активных центрах как кобальта (никеля), так и молибдена. При этом на кобальте (никеле) осуществляются активация Н2 и спилловер атомарного активного водорода, а на молибдене протекают сульфирование (осернение), азотирование и окисление с образованием поверхностных соединений Мо(8), Мо(М) и Мо(0), которые под действием активированного водорода подвергаются десульфированию (обессериванию), деазотированию и восстановлению  [c.569]


    Подобным образом гидрируется "молодой" кокс на поверхности носителя за счёт спилловера водорода. Кроме того, при образовании кокса в каркас полициклических ядер карбоидов и в виде их концевых групп могут входить гетероатомы кислорода, серы и азота, значительная концентрация которых оказывает стимулирующее влияние в реакциях образования кокса. Таким образом, удаление этих веществ с поверхности катализатора будет оказывать ингибирующее влияние на коксообразование. [c.78]

    При разработке способа за основу принимались те технологические факторы, которые можно было бы изменять в процессе эксплуатации, создавая тем самым наиболее благоприятные условия для удаления коксовых отложений с поверхности катализатора. Такими факторами, в частности, являются парциальное давление молекулярного водорода в реакционной зоне и искусственное повышение концентрации атомарного водорода на платиновых центрах катализатора, что приводило бы к усилению явления "спилловера" водорода. [c.79]

    На рис. 6.5 показаны кривые дифференциального термического анализа (ДТА), полученные Маслянским Г.Н. при выжиге кокса с алюмоплатинового катализатора. На термограмме обнаруживаются два пика в интервале температур 200-370 С и 370-550 °С. С повышением давления водорода при риформинге выход кокса и высота обоих пиков уменьшаются. Считается, что первый пик на термограмме связан с горением непредельных углеводородов на платине, а второй пик характерен для горения кокса, карбоидизированного на кислотных центрах и инертных участках оксида алюминия. Определенную роль может играть также спилловер кислорода, заключающийся в активации молекулярного кислорода на платине, его натекании на поверхность носителя и особенно его кислртные центры и тем самым участие в реакциях окисления. Следствием является то, что при низкотемпературном окислении (до 370 С) выгорают соединения не [c.144]

    ТОЛЬКО блокирующие платину, но и находящиеся в примыкающих к платине участках носителя. Горение кокса на более удаленных его участках происходит при значительно более высоких температурах, от 370 до 550 С (см. рис. 6.5). Таким образом, кокс, отлагающийся на алюмоплатиновом катализаторе, распределен на разных участках поверхности катализатора. Согласно анализам продуктов горения, кокс в зоне платины содержит больше водорода, а в зоне носителя - больше углерода, что свидетельствует о большей степени его карбонизации и ароматизации. Считают, что увеличение содержания хлора в катализаторе способствует усилению спилловер-эффекта и тем самым уменьшению закоксовывания платины. В.К.Дуплякин и др. доказывают, что катион Pt + имеет большую активность по сравнению с атомом Pt . [c.145]

    Механизм стабилизирующего действия олова на катализатор отличается от действия рения, олово отравляет центры прочной адсорбции на платине, что предотвращает ее закоксовывание [73]. Олово и германий, предотвращая блокирование платины коксом, способствуют поддержанию высокой скорости спилловера водорода, при этом гидрирование поверхностных ненасыщенных соединений, склонных к образованию кокса на носителе, будет протекать с наибольшей интенсивностью вблизи кластеров, включающих платину и олово (или германий). Таким образом, повышение стабильности платиновых катализаторов риформинга при промотировании оловом и германием [c.38]

    Пропускание углеводородов над АПК при высоких температурах приводит к быстрому их закоксовыванию и падению активности. В случае пропускания через катализатор смеси углеводородов и водорода под средним давлением падение активности, селективности и образование на нем кокса заметно замедляются. Это объясняется быстрой стадией диссоциации адсорбированного водорода на металле, а также миграцией, натеканием (спилловером) атомов водорода через границу фаз к носителю и гидрированием ненасыщенных соединений как на металле, так и на носителе. Спилловеру водорода способствует повышение дисперсности платины, температуры, давления, содержания хлора и модифицирование носителя. Однако чрезмерное повышение парциального давления водорода способствует уменьшению ароматизации парафинов из-за параллельного протекания конкурентной реакции гидрокрекинга. [c.147]

    Повышение стабильности Pt-Re и Pt-Ir катализаторов объясняется тем, что образующийся на этих металлических сплавах атомный водород способствует распаду мультиплетных комплексов, десорбции и транспорту ненасыщенных углеводородов на соседние рений- или иридиевые центры, их гидрированию в более стабильные соединения, препятствуя тем самым закоксовыванию платино-рениевых центров и способствуя поддержанию большей скорости спилловера водорода. Поэтому отложение кокса происходит главным образом на более удаленных от биметаллических кластеров участках носителя, где концентрация водорода спилловера мала. Этим можно объяснить тот факт, что на катализаторах Pt-Re и Pt-Ir/Al203 риформинг можно осуществлять до накопления в нем 12, а иногда 20% (мае.) кокса. [c.154]


    Таким образом, модифицирующее действие соединений рения и иридия заключается в образовании сплавов с платиной, увеличением энергии распада мультиплетного комплекса и десорбции непредельных, которые, попадая на металлические участки рения или иридия, гидрируются за счет спилловера атомного водорода до более стабильных соединений, или, попадая на участки носителя, инициируют топографическую цепную реакцию деструктивной поликонденсации с образованием кокса. Поэтому на диаграмме ДТА отсутствует экзотермический пик при 200 С, хв актерный для горения кокса на платине, наблюдается слабый пик при 380 С, обусловленный горением коксогенов на металлических центрах рения или иридия, и самый значительный пик при 500 С, характерный для горения кокса на носителе. [c.154]

    Наряду с Pt-Sn- комплексами на поверхности катализатора олово содержится в двух- и четырехвалентном состоянии. Имеются также большие кристаллы платины. Из рис. 6.14 и 6.15 видно, что активность Pt-Sn-катализаторапри низких температурах (315 С) мала даже в реакции дегидрирования циклогексана, что свидетельствует о слабой способности образования мультиплетного комплекса. С повышением температуры ускоряется образование мультиплетного комплекса с последующим его распадом и десорбцией продуктов реакции за счет увеличения спилловера водорода. При этом основная часть продуктор переходит в газовую фазу, а часть тяжелых непредельных соединений мигрирует на носитель, где инициирует топографическую цепнун реакцию деструктивной поликонденсации до кокса. Об этом свиде- [c.155]

    Принимая во внимание, что протекание процесса переноса протонов и электронов родственно явлению спилловера, можно объяснить действие промотора, сульфидирования и гидроочистки в целом, предполагая, что реакция гидрообессеривания состоит из двух отдельных окислительно-восстановительных стадий, причем одна поставляет атом И, а другая дает электроны 2Со2+ + На + 28 - 2Со + 25Н , т.е. [c.174]

    Другим типом взаимодействия металла с носителем является перенос водорода (спилловер). Наиболее общий и хорошо изученный пример спилловера — адсорбция и диссоциация водорода на частицах металла с последующим переходом его на поверхность носителя, где водород реагирует с адсорбированными молекулами. [c.15]

    Роль водорода. Пропускание углеводородов над хлорированным и фторированным оксидом алюминия при температурах риформинга приводит к быстрому их закоксовыванию [Ш, 112]. Однако катализаторы риформинга на этих носителях работают длительное время, не изменяя существенно своей активности и селективности. Следовательно, в условиях риформинга, гидрирование ненасыщенных соединений, ответственных за образование кокса, происходит не только на платине, но и на носителе. Гидрирование же на носителе может осуществляться только за счет водорода спилловера. [c.56]

    Согласно [116] механизм спилловера водорода на алюмоплатиновом катализаторе включает быструю стадию диссоциации адсорбированного водорода на металле, а также быструю миграцию атомов водорода через границу фаз к оксиду алюминия. Лимитирующая стадия— диффузия атомарного водорода на поверхности оксида алюминия. Наиболее интенсивно спилловер водорода протекает при высоких температурах, причем скорость его возрастает с повышением дисперсности платины и давления водорода. Следовательно, повы- [c.56]

    Поскольку скорость спилловера водорода на алюмоплатиновом катализаторе лимитируется скоростью диффузии на поверхности оксида алюминия, концентрация атомарного водорода должна быть наибольшей на участках носителя, примыкающих к платине. Поэтому можно ожидать, что закоксованность этой зоны носителя будет .ф.лее дакрй,, , ощж,аиие водорода в коксе ...более высоким. -6де< ланныи вывод в известной мере подтверждается экспериментальными данными работ [96, 971. Представляется вероятным, что подобные участки оксида алюминия с малыми о-уюжениями кокса играют. наиболее активную, возможно определяющую, роль в бифункциональном катализе реакции углеводородов. [c.57]

    Доля поверхности носителя, на которой водород спилловера тормозит образование кокса скорее всего не является постоянной. В частности, она должна изменяться в зависимости от степени закоксованности платины и условий процесса. Так, снижение давления в процессе каталитического риформинга должно привести к уменьшению скорости спилловера водорода не только из-за снижения значения рн,, [c.57]

    Введение тритиевой метки твердофазным методом. Твердофазный метод проведения реакции гидрогенолиза предложен Мясоедовым Н.Ф. и сотр. в качестве эффективного способа введения тритевой метки в органические соединения. Сущность метода заключается в том, что включение метки происходит за счёт активированного на катализаторе трития, который может мигрировать по носителю и в объём нанесённого на него субстрата. Это явление получило название спилловер водорода [46]. [c.511]

    При рассмотрении роли спилловера водорода в подавлении коксоотложения на носителе катализатора рнформинга было показано, что наибольшего эффекта можно ожидать на участках носителя вблизи платины. Германий и олово, предотвращая блокирование платины коксом, тем самым должны способствовать поддержанию высокой скорости спилловера водорода. При этом гидрирование повер сностных ненасыщенных соединений, склонных к образованию кокса на носителе, будет протекать с наибольшей интен-чвностью вблизи кластеров, включающих платину и германий или олово). Таким образом, повышение стабильности платиновых катализаторов риформинга при промотировании германием, оловом или свинцом объясняется не только предотвращением блокирования платины коксом, но и подавлением коксообразования на той части поверхности носителя, которая вероятно играет наиболее важную роль в катализе. [c.100]

    Спермацет 1/825, 826 3/876 5/1009 Спермацетовое масло 1/826 4/172 Спермидин 1/39 2/81 4/520 Спермин 1/39 2/81 4/520 5/1039 Сперрилит 1/384 3/304, 1128, 1132 Спецодежда 2/323, 324 Спилловер 4/78Й [c.712]

    Стабилизирующее действие рения проявляется в том, что он катализирует реакцию гидрирования ненасыщенных соединений, являющихся источником коксообразования на платине. Рений, препятствуя закокосвыванию платины, способствует поддержанию высокой скорости спилловера водорода к м тгллу. При этом гидрирование соединений, образующих кокс, протекает наиболее интенсивно на участках носителя, примыкающих к биметаллическим кластерам платины и рения. В связи с этим отложение кокса происходит, главным образом, на участках носителя, наиболее удаленных от биметаллических кластеров, при этом концентрация водорода на указанных участках существенно ниже. Платинорениевый катализатор может эксплуатироваться в процессе без регенерации с накоплением в нем кокса до 20% [63]. [c.35]

    III группа) и кадмий (из II группы). К биметаллическим катализаторам относят платино-рениевые и платино-иридиевые, содержащие 0,3-0,4 % мае. платины и примерно столько же Ке и 1г. Рений или иридий образуют с платиной биметаллический сплав, точнее кластер, типа Р1-Ке-Яе-Р1-, который препятствует рекристаллизации — укрупнению кристаллов платины при длительной эксплуатации процесса. Биметаллические кластерные катализаторы (получаемые обычно нанесением металлов, обладающих каталитической активностью, особенно благородных, на носитель с высокоразвитой поверхностью) характеризуются, кроме высокой термостойкости, еще одним важным достоинством — повышенной активностью по отношению к диссоциации молекулярного водорода и миграции атомарного водорода (спилловеру). В результате отложение кокса происходит на более удаленных от металлических иентров катализатора, что способствует сохранению активности при высокой его закоксованности (до 20 % мае. кокса на катализаторе). Из биметаллических катализаторов платипо-иридиевый превосходит по стабильности и активности в реакциях дегидроциклизации парафинов не только монометаллический, но и платино-рениевый катализатор. Применение биметаллических катализаторов позволило снизить давление риформинга (от 3,5 до 2-1,5 МПа) и увеличить выход бензина с октановым числом по исследовательскому методу до 95 пунктов примерно на 6 %. [c.282]

    На катализаторах с высокой кислотной и низкой гидрирующей активностями скорость гидрокрекинга сырья зависит от давления более сложно. При невысоких давлениях концентрация водорода на поверхности катализатора мала, и часть кислотных его центров не участвует в ионном цикле в результате дезактивации коксом. С другой стороны, при чрезмерном повышении давления возрастает концентрация водорода не только на металлических (гидрирующих), но и кислотных центрах катализатора вследствие спилловера водорода,в результате тормозится стадия инициирования карбкатионно-го цикла через образование олефинов. Наложение этих двух факторов может привести к наличию максимума скорости реакций как функции давления. Так, выходы отдельных фракций гидрокрекинга на катализаторе с высокой кислотной активностью белого вазелинового масла, выкипающего при 350 - 485 °С, проходят через максимум при 21 МПа (табл. 10.19). [c.590]

    Перенос адсорбированных атомов водорода, а также других частиц с активных центров ва другие участки поверхности катализатора (как правило, менее активные по отношению к адсорбции) получил название спилловер (от англ. spillover - перетекание). Например, образующийся на металлах платиновой группы атомарный водород может переноситься на оксид, где вступает в реакцию с другими адсобнрованными соединениями. [c.697]

    В твердофазном методе (когда вещество, нанесённое на катализатор, нагревают в атмосфере газообразного трития) механизм включения метки иной [6, 7]. Получение меченых препаратов связано с взаимодействием лабильных активированных частиц трития с субстратом (явлением спилловера). [c.485]

    В работе [47] осуществлён квантово-химический расчёт модели спилловера водорода на поверхности графита для протона и радикала. Оказалось, что радикальному водороду, в отличие от протона, не выгодно связываться с модельной графитоподобной поверхностью. То есть, из результатов расчётов следует, что модель миграции трития в виде катиона трития более достоверно описывает спилловер водорода по поверхности графита. Для проверки гипотезы о катионном характере спилловера трития проведён расчёт энергий сродства к протону для различных атомов углерода в молекулах органических кислот [48]. Показано, что существует корреляция между сродством к протону и реакционной способностью при твердофазном изотопном обмене. Изотопный обмен согласуется с механизмом электрофильного замещения. Другими словами, чем выше отрицательный заряд на атоме углерода, тем легче происходит обмен связанного с ним атома водорода [49, 50.  [c.511]

    Если соединения взаимодействуют с тритием, находясь в микрокристаллическом состоянии, то степень включения метки будет определяться, главным образом, спилловером трития. Поэтому основные закономерности при исследовании спилловера трития можно более детально выяснить, только когда при введении метки сам субстрат не может мигрировать по носителю. [c.513]

    В обзоре [46] приводятся имеющиеся в настоящее время сведения по этому вопросу. При исследовании спилловера водорода по поверхности акцептора обнаружены одновременно и электронная, и ионная проводимости. Поэтому наблюдаемое явление может быть описано с помощью конденсаторной модели ( apa ity pattern). Согласно этой модели, образовавшиеся при взаимодействии газообразного трития с катализатором ионы Н+ и электроны двигаются по поверхности акцептора раздельно. Поверхность акцептора при этом может быть представлена как обкладки своеобразного многослойного конденсатора. В зависимости от условий эксперимента с той или иной вероятностью происходит взаимодействие катионов трития и электронов (разрядка соседних противоположнозаряженных зон), при этом образуется атомарный тритий, который быстро рекомбинирует и переходит в газовую фазу (рис. 19.1.5). Когда поток Н+ и электронов достигает субстрата, происходят реакции изотопного обмена, гидрирования, дегалоидирования и т. д. [c.513]


Смотреть страницы где упоминается термин Спилловер: [c.182]    [c.78]    [c.156]    [c.51]    [c.59]    [c.104]    [c.536]    [c.569]    [c.600]    [c.742]    [c.123]    [c.536]    [c.34]    [c.286]    [c.480]    [c.95]    [c.514]   
Биофизика Т.2 (1998) -- [ c.293 ]




ПОИСК







© 2024 chem21.info Реклама на сайте