Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафины дегидрирование

    В настоящее время серьезное практическое значение приобретают процессы переработки нефтяных углеводородов в 1,3-бутадиен и изопрен. Наиболее подходящим исходным сырьем для получения этих углеводородов являются н-бутан и изопентан. Переработка их осуществляется каталитическим дегидрированием либо в одну ступень с одновременным получением олефинов и диенов, либо в две ступени с предварительным дегидрированием парафинов до олефинов в первой ступени процесса и последующим дегидрированием олефинов в диеновые углеводороды во второй ступени. [c.284]


    Главными современными методами получения высших олефинов являются крекинг парафинов дегидрирование парафинов полимеризация низкомолекулярных олефинов в присутствии кислотных катализаторов олигомеризация этилена диспропорционирование олефинов. Рассмотрим эти методы более подробно. Поскольку олефины С5 в значительной степени используют в процессах, направленных на производство изопрена, начнем рассмотрение с олефинов Се. [c.116]

    Равновесная глубина дегидрогенизации перечисленных реакций увеличивается с повышением температуры и уменьшением давления. Влияние температуры на дегидрирование парафиновых углеводородов до олефинов в условиях термодинамического равновесия показано на рис. 1 и в табл. 2. Вполне очевидно, что 50%-ная конверсия парафинов Сд и выше в альфа- [c.190]

    Гидрокрекинг. Гидрогенолиз парафиновых и нафтеновых углеводородов происходит медленнее, чем дегидрирование и изомеризация эта реакция не имеет большого значения при гидроформинге, если объемные скорости не слишком малы. Вообще, реакции гидрокрекинга более характерны для каталитического, чем для термического процесса. Так, при гидрокрекинге к-гептана продуктами являются главным образом углеводороды Сз и С4. Термический процесс дал бы гораздо большие количества продуктов расщепления С — С4 и Сз — Сб [158]. Главной причиной увеличения октанового числа при гидрокрекинге является уменьшение размера молекул. Равновесная смесь парафинов С дает при переходе в -i повышение октанового числа на 14—15 это, однако, сопровождается потерей 8—10% об. сырья [137]. [c.348]

    I. Переработка нефти расщепление длинноцепочечных парафинов, дегидрирование алканов, димеризация и олигомеризация этилена  [c.208]

    Вторая стадия дегидрирования парафинов (дегидрирование олефинов). На второй стадии дегидрирования бутана ли изопентана полученная олефиновая фракция превращается в бутадиен или изопрен. При использовании в качестве исходного сырья соответствующих олефинов эта стадия является единственной. [c.679]

    Представленные на рис. 1 теоретические соотношения равновесия между пропаном и пропиленом не могут осуществиться из-за реакции крекинга [39]. В табл. 1 сравниваю результаты дегидрирования различных парафинов —С4. [c.11]

    Оптимальные условия сульфатирования. Исходное сырье — олефины, полученные при крекинге твердого парафина, дегидрировании парафиновых углеводородов с тем же числом углеродных атомов или путем синтеза из СО и Нг над разными катализаторами. Содержание олефиновых углеводородов во фракции Св—С18, выкипающей от 120 до 320 °С, составляет примерно 50—60 %. Расширение пределов кипения исходной фракции за счет вовлечения в переработку фракций Се—С12 нежелательно. Обычно это делают с целью увеличения теплопроводности и улучшения теплообмена между сульфомассой и охлаждающим раствором. Полезная глубина сульфатирования в лабораторных условиях достигает 75 %, а в промышленных — обычно 50—60 %. [c.23]


    Исходное сырье. Сырьем для нолучения вторичных алкилсульфатов являются продукты, полученные при крекинге твердого парафина, дегидрировании парафиновых углеводородов с тем же числом углеродных атомов и полученные синтезом из СО и Н2 над разными катализаторами. Содержание олефиновых углеводородов во фракции Се—С18, выкипающей от 120 до 320° С, составляет примерно 50—60%. Наиболее приемлемой является фракция С12—С18, выкипающая в пределах температур 190— 300° С. Расширение пределов кипения исходной фракции за счет вовлечения в переработку фракции Св —С12 нежелательно. Тем не менее на действующих и проектируемых установках предусмотрено использование углеводородов начиная с Се. Это связано с необходимостью снижения вязкости сульфомассы с целью увеличения теплопроводности и улучшения теплообмена между сульфо-массой и охлаждающим раствором. [c.174]

    Ароматизация парафинов и нафтенов. Каталитическое дегидрирование нафтенов и циклизация — дегидрирование парафинов с образованием ароматических углеводородов представляют собой основные реакции риформинга. Обычные условия процесса мольное соотношение водород углеводород равно 4 1, давление составляет приблизительно 35 атм, а температура — 500° С. [c.377]

    Каталитическое дегидрирование парафинов. Дегидрированию высших парафинов посвящено много исследований. Представляет интерес работа [11] по дегидрированию индивидуаль- [c.124]

    Современное состояние вопросов. По-видимому, дегидрирование бутана является еще слишком дорогим методом для получения моторного бензина, и поэтому его можно применять только для получения более ценных продуктов. В обзоре от 1946 г. (фирма М. В. Келлог Ко ) [60], указывалось на нерентабельность дегидрирования пропана или бутанов до олефинов с целью алкилирования или изомеризации последних, так как большое количество газообразных олефинов получается в процессах термического или каталитического крекингов. По-видимому, процессы дегидрирования высших парафинов представили бы промышленный интерес, если бы при этом удалось получить высокие выходы олефинов. [c.200]

    Различие между полимеризацией этилена в присутствии и в отсутствии фосфорной кислоты состоит в том, что в первом случае наблюдается образование ароматических и парафиновых углеводородов, в продуктах же термической полимеризации этилена образуются небольшие количества парафинов ири полном отсутствии ароматических соединений. По-видимому, фосфорная кислота действует как катализатор гидрирования и дегидрирования. При термической полимеризации получены более высо-кокипящие углеводороды, чем при каталитической. [c.188]

    Общепринятая теория бифункциональной изомеризации предполагает, что под действием металлического компонента происходит дегидрирование парафинов с образованием олефинов, а олефины изомеризуются на кислотных центрах[67]. Каталитическая система металл - носитель типа алюмоплатинового катализатора благодаря своей бифункциональной природе позволяет, в зависимости от типа реакции, применять различные способы промотирования, направленные на усиление тех или иных функций этой системы. [c.42]

    Ион К" , который инициирует реакционную цепь, образуется прибавлением к олефиновой молекуле протона от кислого катализатора. Молекула олефина может быть добавлена в систему, присутствовать как примесь или образоваться дегидрированием парафина. [c.116]

    В заключение настоящего параграфа приводим численные значения логарифмов констант равновесия реакций дегидрирования парафинов и 1-алкенов, рассчитанные по спектроскопическим данным Вагмана, Кильпатрика, Питцера и Россини [34]. [c.272]

    Обычно первичными реакциями пиролиза является дегидрирование и разрыв углеродной связи. Степень того или другого зависит от сырья и от условий пиролиза, но поскольку это представляет практический интерес, обнаружены методы, позволяющие увеличивать размер дегидрирования, а в некоторых случаях превращать его в почти единственную реакцию. Дегидрирование снабжает сырьем производство пластиков и синтетического ь аучука. Наиболее важными процессами дегидрирования являются процессы получения этилена, пропилена, бутадиена из газообразных парафинов, стирола из этилбензолов и ароматических углеводородов из циклогексана и его производных. [c.98]

    Полагают, что первой ступенью в циклизации парафинов является дегидрирование их в олефины так, как это показано выше. Олефины, в свою очередь, циклизуются и дегидрируются в ароматические углеводороды [291, 293—299, см. также 300— 302]. Данные табл. П-16 доказывают, что первой ступенью при превращении н-гептана в толуол являются олефины. Там же ясно показано, как возрастает отравление катализатора реакции циклизации (СгаОз, содержащий 10% ЪхО )- Скорость образования гептена оставалась достаточно постоянной, в то время как скорость образования толуола быстро падала. [c.104]


    Молекулярный водород но существу инертен при крекинге углеводородов над алюмосиликатным катализатором, который, в свою очередь, в очень малой степени вызывает изомеризацию парафинов. Когда же к алюмосиликатному добавлен или нанесен на него катализатор гидрирования-дегидрирования и в систему подается водород, каталитический комплекс становится бифункциональным и происходят глубокие превращения. Прямые цепи [c.346]

    Основные соображения. При переработке нефти происходят следующие реакции изомеризация, гидрирование, дегидрирование, полимеризация, крекинг, циклизация, ароматизация, обессеривание и т. д. В большей или меньшей степени все эти реакции термодинамически возможны для углеводородных систем. Однако благодаря селективному действию катализатора и подбору условий процесса — давления, температуры — многие из этих реакций подавляются (скорость реакций становится незначительной), несмотря на то, что они могут быть термодинамически чрезвычайно благоприятными. Так, нанример, гидрокрекинг парафинов проводят только при высоких температурах, несмотря на то, что и при комнатных температурах происходящие при этом реакции характеризуются сильно отрицательными стандартными свободными энергиями. [c.374]

    В настояшее время реализовано несколько модификаций процесса каталитического дегидрирования парафинов под давлением водорода на платинсодержащем катализаторе процессы фпрмы ЮОП (США) ио производству олефинов п выше (пакол-процесс) и Сз—С5 (катафин-ироцесс, процесс оле-флекс — рис. 55). Селективность процессов — до 90% для Сз — 5 и более 90% для высших олефинов. Ацетиленовые и диеновые углеводороды практически отсутствуют вследствие давления водорода и применения гидрирующего катализатора. Глубина деструкции исходного парафина минимальная — выход газа С —Сг не превышает 5%. [c.159]

    К 4)еакциям с высокой термодинамической вероятностью (более 95%) протекания в условиях крекинга относятся реакции расщепления парафинов и олефинов. дегидроциклизации парафинов, дегидрирования гидроароматических углеводородов и перераспределения водорода в ненасыщенных циклических углеводородах с образованием циклояарафиновых и ароматических углеводородов [1]. Такие реакции, как изомеризация, деалкилирование алкилароматических углеводородов, перераспределение водорода в линейных олефинах, циклизация парафинов и олефинов с образованием нафтенов характеризуются термодинамической вероятностью протекания до определенного равновесного состояния, [1, 2]. Однако близкое к равновесию соотнощение композитов наблюдается только для некоторых реакций изоме-ризациТКолефинов, изомеризации и деалкилирования ароматических углейодородов. [c.66]

    Используя метод молекулярных орбиталей, авторы [10] рассчитали энергию взаимодействия протона ОН-группы с -гептаном. Было установлено, что протолптический крекинг н-парафина энергетически выгоднее (на 83,8 кДж/моль) р-расщепления через карбениевые ионы и примерно эквивалентен крекингу разветвленных алканов. Таким образом, инициирование путем протолитического крекинга является наиболее вероятным. Это наводит на мысль о том, что механизм, показанный на рис. 5.4, справедлив как для данного случая, так и вообще для всех реакций крекинга на твердых катализаторах. Из рис. 5.4 видно, что начальное соотношение алканов и олефинов в продуктах определяется соотношением числа центров Бренстеда и Льюиса на свежем катализаторе. Образующиеся при этом карбокатионы обычно остаются на указанных центрах. Если бы они десорбировались, соотношение алканов и олефинов было бы близким к единице. Однако если цепь реакций инициируется по крайней мере на нескольких центрах, будет получен высокий начальный выход алканов. Этот же процесс может проявляться при образовании парафинов дегидрированием углеродистых отложений (кокса) на поверхности катализатора. [c.90]

    С повышением температзфы расщепление идет более глубоко, но дополняется реакциями дегидрирования и циклизации. Дегидрирование углеводородов наблюдается в небольшой степени уже при 500—550 °С, а при более высокой температуре оно получает значительное развитие, особенно для низших парафинов. Дегидрирование также протекает как радикально-цепной процесс  [c.53]

    Исключительно важным для разделения практически равнокипящих олефинов и парафинов является способ экстрактивной фракционировки. При этом газовая смесь приводится в контакт с движущейся ей навстречу экстракционной средой, причем олефиповая составная часть поглощается этой средой, парафины же не абсорбируются п удаляются из установки. Этот процесс играет также большую роль в получении чистого бутадиена дегидрированием бутапа. [c.70]

    Выделение изобутановой фракции составляет значительную долю затрат процесса бутамер ( /з капитальных вложений). При объединении этого процесса с установкой алкилирования достаточно одного деизобутанизатора установки алкилирования, что снижает затраты. Из 32 установок бутамер 10 объединены с установками фтороводородного алкилирования фирмы иОР [95]. Производительность установок по сырью 30— 550 тыс. т/год. Фирма UOP предлагает различные варианты комбинирования процесса бутамер с процессами алкилирования, дегидрирования и синтеза МТБЭ для производства алкилата и МТБЭ из парафинов С3-С4 (рис. 3.21 и 3.22). Комбинирование этих процессов и общая система разделения продуктов создает значительные экономические преимущества. Характерно наличие блока гидрирования н-бутиленов на рис. 3.22, предназначенного для очистки отходящей из блока синтеза МТБЭ изобутановой фракции от -бутиленов и бутадиена. При наличии общего деизобутанизатора эти продукты могут попасть в сырье процесса бутамер, где они, очевидно, нежелательны. [c.98]

    Процесс служит не только для разделения узкокипящих парафинов и олефинов, но также и для разделения жидких углеводородных смесей. К этому вопросу мы вернемся позднее при рассмотрении способов получения чистых ароматических углеводородов. Особое значение имеет дистекс-процесс при получении чистого бутадиена методом ступенчатого дегидрирования бутана. [c.77]

    Как ВИДНО ИЗ табл. 10.5, в условиях каталитического рифор — мин1а наиболее легко и быстро протекают реакции дегидрирования гомологов циклогексана. Относительно этой реакции скорость аро — мати зации из пятичленных нафтенов примерно на порядок ниже. Наиболее медленной из реакций ароматизации является дегидро — циклизация парафинов, скорость которой (на два порядка ниже) лимитируется наиболее медленной стадией циклизации. [c.179]

    Вначале происходит дегидрирование н-парафина на металли — ческих центрах катализатора. Образовавшийся олефин на кислот — ком центре превращается в карбений —ион, который легко изоме — р изуется. Изомерные карбений —ионы, возвращая протон кислот — кому центру катализатора, превращаются в соответствующие оле — фины, которые затем гидрируются на металлических центрах катализаторов изомеризации. [c.198]

    Так, новая технология производства низших олефинов дегидрированием парафинов (пропана, бутана) создает предпосылки для реализации модульного принципа. В качестве таких модулей возможно большое число вариантов дегидрирование пропана — бутиловые спирты или масляные альдегиды гидро-формилированием дегидрирование пропана — гидратация в нзопропанол дегидрирование пропана — полипропилен дегидрирование бутана — метилэтилкетон, бго -бутанол и т, д. [c.152]

    Недостаток процессов дегидрр1рования — невысокая (30— 40%) конверсия за проход, определяемая термодинамикой. Однако ири дегидрировании образуются малокомпонентные газовые смеси с удовлетворительными соотношениями показателей летучести. Пропаи-иропиле1ювая и бутан-бутиленовая фракции из-за высокой селективности процесса не содержат вредных примесей. Поэтому фракции можно использовать непосредственно для синтеза метил-грег-бутилового эфира, изо-пропанола, егор-бутаиола, как сырье для оксосинтеза и др. Парафины Сз—С4 возвращают (рецикл) иа дегидрирование после отделения их от продуктов синтеза. [c.159]

    Каталитическое дегидрирование высших нормальных парафинов протекает селективно лишь при невысокой степе1ш прев-ращения сырья. Для выделения олефинов из смеси с парафинами требуются существенные капитальные вложения и повышенные эксплуатационные затраты. [c.161]

    Дегидрирование до олефинов. Наряду с реакциями изомеризации большое внимание уделялось изучению дегидрирования низкомолекулярных парафинов. В ранних работах по каталитическому дегидрированию газообразных парафиновых углеводородов Гроссе и Ипатьев [14] указывали на то, что разрыв связи С—С энергетически более выгоден, чем разрыв связи С-Н. Кроме этого, процесс осложняется тем, что для достижения равновесия требуются высокие температуры (500—750° С). С увеличением молокуляр11ого веса углеводородов возрастает роль реакций циклизации. [c.166]

    Таким образом, каталитический риформинг не может ограничиться дегидрированием нафтеновых углеводородов, так как присутствие не-нревраш ешшх низкооктановых парафинов заметно понижает общее октановое число продукта. Следует подчеркнуть, что дегидрирование нафтенов-в процессе каталитического риформинга затрагивает как шестичленные, так и пятичленные нафтены. Если бы процесс ограничивался только углеводородами с шестичленными кольцами, то конечный результат во многих случаях был бы незначительным. [c.172]

    Фирма Goudry предлагает сочетание процесса низкотемпературной изомеризации н-бутана с собственным процессом дегидрирования парафинов Сз—С4 (катофин) для производства алкилата, МТБЭ, пропилена и бутена-1 и предусматривает установку селективного гидрирования непредельных соединений [П2]. [c.99]

    В ходе проведенных исследований установлено, что максимальной олефинообразующей способностью, оцениваемой по соотношению суммы олефинов к сумме парафинов в газе, обладают катализаторы, содержащие оксиды железа (рис. 1.6). Причем стабильные максимальные значения этого показателя наблюдаются на всем исследованном временном интервале для гранулированного железоокисного катализатора. Для других катализаторов этот показатель растет одновременно с потерей окислительной активности и далее снижается под действием накопления коксовых отложений. Таким образом, установлено, что железоокисные катализаторы обладают высокой селективностью в реакциях окислительного дегидрирования. [c.26]

    Для иарафино-нафтеновых ут леводородов, но данным ПМР (рис. 2.5-2.7), с ростом температуры процесса характерно увеличение доли метильного водорода за счет увеличения доли изоструктур, раскрытия нафтеновых циклов. Снижение Н.,/Н ,. обусловлено процессами дегидрирования нафтеновых колец. За счет группы парафино-нафтенов происходит максима. 1ьное снижение выхода остаточной фракции, что связано ие то гг>ко со снижением молекулярной массы за счет их разложения, но и с последовательным переходом к а]-)оматическим и асфальтеновым структурам. [c.53]

    Дегидрирование носит характер эндотермической реакции тервого порядка. Степень дегидрирования при прочих равных условиях с повышением температуры и уменьшением давления З величпвается. Табл. П-10 дает расчетные температуры, необхо-л имые для различных ступеней превращения отдельных низко-жипящих парафинов в соответствующие им олефины, а равно-. весные константы для Са, Сз и С4 олефин-парафин-водородных смесей приведены в табл. П-11. [c.98]

    Каталитическая дегидроцикдизация парафинов проходит труднее, чем олефинов в обоих случаях реакция идет медленнее, чем превращение нафтенов в ароматику описанным выше дегидрированием [292]. В табл. П-15 приведены результаты каталитической дегидроциклизации над окисью хрома. Объемная скорость была 18 мл углеводорода в час на 15 г катализатора. [c.104]

    По-видимому, основные трудности промышленных процессов заключаются в понижении скорости превращения и в коротком сроке жизни катализатора. Необходима высокая адсорбтивная способность, а это, в свою очередь, предполагает опасность структурного распада. Далее, возможно, по причине реакции водородного обмена на поверхности катализатора накапливается тонкий слой смолы. Однако дегидроциклизация парафинов вполне возможна в присутствии водорода под давлением, и (наряду с дегидрированием нафтенов) этот процесс играет важную роль в образовании ароматики там, где сырье каталитического риформинга получается при жестких условиях. [c.104]

    Допускают, что реакция дегидрирования является первоначальной реакцией парафинов с серой затем сероводород освобождается, увеличивая количество образованных олефинов. Механизм реакции точно не установлен. Сульфирование ускоряется с увеличением молекулярного веса парафинов разветвленные парафины и циклопарафины сульфуризуются быстрее, чем соответствующие углеводороды с прямой цепью [723]. [c.148]

    Нафтены сульфуризуются точно таким же путем, как и парафины. Сб-нафтены превращаются благодаря дегидрированию в циклогексаны, ароматические углеводороды [724, 725 и тиофенолы. Последние вызывают значительные трудности в эксплуатации, так как загрязняют необработанные бензины каталитического крекинга они устраняются предварительным защелачиванием, но опять-таки создаются некоторые трудности при отделении щелочей. [c.149]


Смотреть страницы где упоминается термин Парафины дегидрирование: [c.187]    [c.190]    [c.226]    [c.171]    [c.88]    [c.339]   
Основные начала органической химии том 1 (1963) -- [ c.363 , c.412 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы Парафины, Насыщенные дегидрирование

Алканы Парафины, Предельные углеводороды дегидрирование

Парафины каталитическое дегидрирование

Парафины термическое дегидрирование

Техника безопасности при дегидрировании парафино



© 2024 chem21.info Реклама на сайте