Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтетические волокна полиэфирные

    Термостабилнзация включает нагревание ткани или любого другого изделия из синтетических волокон в натянутом состоянии до требуемой температуры и последующее быстрое охлаждение материала. При этом происходит разрыв межмолекулярных (водородных и других) связей, вследствие чего ликвидируются внутренние остаточные напряжения в волокнах. Под действием внешней нагрузки макромолекулы полимера занимают положения, соответствующие ненапряженному релаксиро-ванному состоянию волокон. В момент быстрого охлаждения текстильного материала это новое расположение макромолекул полимера фиксируется вследствие повторного образования межмолекулярных связей. Верхний предел температуры термостабилизации ограничивается температурой размягчения того или иного синтетического волокна, а нижний — определяется минимальной энергией, необходимой для обратимого разрущения межмолекулярных связей. Диапазон допустимых температур зависит также от среды, в которой проводится термостабилизация. Обычно ее осуществляют горячим воздухом. В этом случае оптимальная температура термофиксации для изделий из полиамидных волокон составляет 190—200 °С для полиэфирных и триацетатных материалов она равна 210—220 °С длительность процесса не превышает 60—90 с. Иногда термостабилизацию тканей совмещают с процессом фиксации красителей синтетическим волокном, например при термозольном способе крашения дисперсными красителями. Красители для крашения синтетических волокон должны быть устойчивы к действию высоких температур и не должны при этом сублимироваться. [c.38]


    Синтетические волокна имеют ряд недостатков по сравнению с природными, как то низкую гигроскопичность, что важно для соблюдения определенных гигиенических условий. Полиэфирное волокно плохо окрашивается и требует подбора специальных красителей. Основные физикохимические свойства волокон приводятся в табл. 70. [c.226]

    По своим свойствам это волокно обладает наибольшей светостойкостью, превосходя все натуральные искусственные и синтетические волокна, по термостойкости оно уступает только полиэфирному волокну лавсан. [c.327]

    Так же как и другие синтетические волокна, полиэфирное волокно обладает высокой стойкостью к действию бактерий и микроорганизмов. Это волокно не горит, а только плавится. [c.152]

    В промышленном масштабе полиамиды начали получать в США с 1939 г., в Германии с 1943 г. для переработки их в синтетические волокна. Производство полиэфирного волокна из полиэтилентерефталата [c.668]

    В конце 40-х годов начинается промышленное производство нового типа синтетического волокна — полиэфирного волокна терилен, которое в последние годы развивалось в различных странах очень высокими темпами. [c.10]

    Полиамидные синтетические волокна получают из органических веществ, содержащих в своем составе амидные группы КН, полиэфирные — из веществ, содержащих группы С=0, и поливиниловые [c.347]

    Особо важное значение за последнее время приобрел процесс окисления П-ксилола в терефталевую кислоту [17, стр. 54 29]. Терефталевую кислоту конденсируют с этнленгликолем и получают полиэфирную смолу, используемую для производства синтетического волокна — терилена и различных пленок. [c.27]

    Дисперсные красители - важнейшая группа красителей, предназначенных для крашения и печатания синтетических волокон - полиэфирных, ди- и триацетатных, полиамидных, полиакрилонитрильных и др. Нерастворимые или мало растворимые в воде, эти красители окрашивают волокна, находясь в красильной ванне в тонкодисперсном состоянии. Антрахиноновые красители играют в этой группе выдающуюся роль, особенно при крашении в яркие глубокие и темные цвета с высокими показателями прочности окрасок [1,7,18]. [c.23]

    Чувствительность дисперсных красителей к дымовым газам проявляется главным образом на ацетатных волокнах на синтетических волокнах редко наблюдается обесцвечивание окрасок. Устойчивость окрасок к мокрым обработкам у дисперсных красителей на полиэфирном волокне высокая и несколько превосходит аналогичные показатели на других волокнах. [c.158]


    ПОЛИЭФИРНЫЕ СИНТЕТИЧЕСКИЕ ВОЛОКНА (ВОЛОКНО ЛАВСАН) [8] [c.213]

    Синтетическое волокно лавсан (дакрон в США, терилен в Англии) получается прядением из расплава полиэтилентерефталата —гетеро-цепного Сложного полиэфира терефталевой кислоты и этиленгликоля [167, с. 117]. Получение полиэтилентерефталата и его переработка в волокна и пленки является одной из самых перспективных и значительных по объему областей применения этиленгликоля. Это объясняется тем, что полиэфирные волокна обладают [c.105]

    Из всех синтетических волокон полиэфирное — лавсан обладает наибольшей стабильностью при длительном воздействии температуры. Волокна из лавсана при 150° С в течение 1000 час. теряют прочность на 50%, а все остальные волокна при этой температуре полностью разрушаются. [c.226]

    Синтетические волокна вырабатывают из полимеров, получаемых из нефти, угля и природного газа, полиамидные, полиэфирные, полиакрилонитрильные, поливинилхлоридные и др. [c.9]

    В 1972 Г. свыше 90% мировой потребности в синтетических волокнах удовлетворялось за счет трех наиболее важных видов волокон, представленных в табл. 9.1. В ближайшем будущем это положение, вероятно, сохранится, но полиэфирные волокна выйдут на первое место, потеснив полиамидные. Все вновь разработанные волокна, по-видимому, будут использоваться лишь для специальных целей, а не для изготовления товаров широкого потребления. [c.283]

    Синтетические волокна. II. Полиэфирные волокна [c.325]

    Рентгеноструктурные данные свидетельствуют о том, что в кристаллических участках ориентированного полиэтилентерефталата макромолекулы почти целиком вытянуты вдоль оси волокна, причем копланарность ароматических колец (рис. 9.5) способствует плотной упаковке молекул. Следствием такой негибкой надмолекулярной структуры полиэфирных волокон является их более высокая жесткость по сравнению с другими синтетическими волокнами. Значительная степень ориентации и [c.326]

    Некоторые синтетические волокна, такие, как полиамидные и полиэфирные, являются по своей природе термопластичными материалами. При нагревании они размягчаются и затем плавятся. Такие волокна легко Окрашиваются дисперсными красителями. Процесс крашения заключается в нагревании волокна в водной дисперсии водонерастворимого красителя, что приводит к переносу красителя в волокно с образованием твердого раствора. В том случае, когда краситель имеет молекулы небольших размеров, его диффузия в массу волокна облегчается. Идеальными с этой точки зрения являются простые водонерастворимые моноазокрасители. В качестве азосоставляющих, помимо фенолов, используемых обычно в синтезе желтых краси- [c.368]

    Применяемые в текстильной промышленности синтетические волокна (полиэфирные, полиамидные, полиакрило-нитрильные), хотя и обладают рядом ценных свойств — высокими износо- и формоустошшвостью, прочностью, — характеризуются низкими санитарно-гигиеническими показателями. [c.5]

    В Белорусской ССР возросло производство азотных удобрений в Гродненском производственном объединении Азот и калийных в производственном объединении Белорускалий , химических волокон в Могилевском производственном объединении Химволокно и на Гродненском заводе синтетического волокна (полиэфирного и полиакрилонитрильного), синтетических смол и пластмасс в Полоцком производственном объединении Полимир . [c.126]

    Оболочки санитарно-гигиенических изделий производят главным образом из вискозных волокон. В настоящее врехмя используют также гидрофобные синтетические волокна (полиэфирные, полипропиленовые) для обеспечения сухого грифа поверхности изделия, соприкасающейся с кожей. В странах ЕЭС на выработку таких материалов затрачено 45,4 тыс. т химических волокон, из них 57,7%—вискозных, 21,8%—полиолефиновых, 19,4%—полиэфирных, 1,1%—полиамидных. [c.310]

    В ближайшие годы предполагается освоить ряд новых производств — капроновой технической ннтп (вторая подочередь) на Барнаульском заводе синтетического волокна, полиэфирной текстильной нити в Светлогорском, капронового корда в Гродненском, полиэфирного волокна в Могилевском производственных объединениях Химволокно . [c.17]

    Синтетические волокна подразделяются на гетероцепные (полиамидные, полиэфирные) и карбоцеппые (нитрон, винол). [c.206]

    Гидрофобные синтетические волокна (полиэфирные, нолиакрило-ннтрильные, поливинилхлоридные, полипропиленовые и др.) выпускаются в больших количествах в виде текстильных и технических нитей и штапельного волокна они широко применяются в различных отраслях текстильной промышленности для производства изделий технического назначения, ковров, искусственного меха и в других отраслях народного хозяйства. [c.76]

    Перечень органических химических промежуточных веществ, которые можно получить из моноолефиновых (этилена, пропилена, нормальных бутенов и изобутена), а также из диолефина, бутадиена и ароматических углеводородов (бензола, толуола, орто-, мета- и параксилолов) впечатляющ. Основные реакции были описаны в серии статей Л. Хэтча и С. Матара. Органические промежуточные соединения и конечные виды продукции, производимой из них, приведены в табл. 56. Среди конечных продуктов можно увидеть материалы, необходимые для экономического развития и роста благосостояния стран. Это прежде всего синтетические пластмассы на политеновой, полистироловой и полихлорви-ниловой основе синтетические волокна (нейлон и полиэфирный дакрон), синтетические резины, получаемые из бутадиена и изо- бутилена полиуретановая пена, лаки, специальные растворители и т. п. [c.252]


    Синтетическими волокнами называют волокна, полученные из синтетических полимеров. Первыми синтетическими волокнами, выпущенными в промышленном масштабе, были полиамидные волокна — капрон, найлон, анид (стр. 479). В настоящее время полиамидные волокна производят во многих странах под разными названиями. По прочности, носкости, эластичности, стойкости к процессам старения они превосхадят природные волокна. Высокими качествами обладает группа синтетических волокон, получаемых из полиэфирной смолы — полиэтилентерефталата (лавсана, стр. 480). Полиэфирные волокна обладают высокой прочностью, 1(оскостью и особенно сопротивлением сминанию. Важное значение приобретают волокна из полиэтилена, полипропилена (стр. 468, 469), полихлорвинила (стр. 470), полистирола (стр. 470), полиакрилонитрила (стр. 473), сополимеров винилацетата и хлористого винила, поливинилового спирта (стр. 471). [c.484]

    Большое значение для повышения прочности нити из искусственного или синтетического волокна, предназначенной для изготовления прочных технических тканей, имеет вытягивание этих нитей. Вытягивание вискозной нити на 60—100% производится в свежесформированном состоянии для этого служат специальные вытяжные приспособления, которые установлены непосредственно на прядильной машине. При получении полиамидной и полиэфирной кордной нити дополнительное вытягивание сформованного волокна производится иногда при повышенной температуре на крутильно-вытяжных машинах. Степень вытягивания полиамидного волокна достигает 300—400%. В результате вытягивания волокна происходит значительное повышение степени продольной ориентации молекул в волокне, что приводит к резкому повышению прочности волокна, снижению разрывного удлинения, к повышению начального модуля, к повышению теплостойкости волокна и его плотности, а также к снижению гигроскопичности. [c.209]

    Непрерывно расширяется сырьевая база и области применения синтетических волокон. В крупных промышленных масштабах вырабатываются, помимо полиамидного волокна, полиэфирные, полиакрилонитрильные и другие карбоценные волокна. Исходным сырьем для этих волокон, кроме бензола и фенола, являются п-ксилол, циклогексан, дивинил, этилен, ацетилен и др., т. е. все возрастает значение нефтехимической промышленности в обеспечении исходным сырьем производства синтетических волокон. [c.36]

    Стереорегулярный полипропилен представляет особый интерес в производстве синтетического волокна [72]. Стоимость пропилена в 5 раз ниже стоимости полистирола и в 9 раз ниже стоимости полиамидного и полиэфирного волокон. В то же время удельная прочность волокон из полипропилена выше удельной прочности найлона (табл. ХП.И). Плотность полипропилена очень низка, следовательно, ткани из него отличаются особенной легкостью к тому же они абсолютно влагостойки, имеют высокие электроизоляционные качества, стойки к действию растворов кислот и ш елочей. Недостаток полипропиленовой ткани заключается в сравнительно низкой температуре ее плавления. [c.790]

    Особое внимание уделяют упаковочным материалам, предохраняющим волокно от загрязнения и повреждения в пути. За рубежом на заводах для упаковки кип с резаным волокном используют пленочные материалы, часто армированные синтетическими волокнами. Например, фирма Дюпош выпускает и использует для этой цели нетканый материал из полипропиленовых волокон под торговой маркой типар массой от 0,7 до 1,4 кг/м и ширино11 рулонов или листов до 4,7 м. При упаковке в холст, грубое полотно и мешковину полиэфирное волокно загрязняется и становится непригодным для текстильной переработки. [c.208]

    Конденсация дикарбоновой кислоты и алкандиола ведет к образованию полиэфира. Полиэфиры широко используют в производстве синтетических волокон (полиэфирные волокна). Один из наиболее промышленно важных полиэфиров - лавсан - получают поликонденсацией терефталевой кислоты и этиленгликоля. [c.274]

    С помощью поликонденсации получают полиэфирные п полиамидные высокомолекулярные соединения, из которых пз-гогавливают синтетические волокна. [c.343]

    К химическим волокнам относятся искусственные и синтетические волокна. Искусственные волокна получают на химических предприятиях, но из природного сырья как органического (целлюлоза), так и неорганического (соединения кремния, металлы, их сплавы) происхождения. Химические волокна производят из синтетических полимеров полиамидов, полиэфиров, гюлиакрилонитрилов, полиолефинов и др. Наиболее распространенным искусственным волокном является вискозное. В эту же группу входят медноаммиачное и ацетатные волокна. Вискозное и медноаммиачное волокна, состоящие из гидратцеллюлозы, часто называют также гидратцеллюлозными. Искусственные неорганические волокна находят ограниченное применение для изготовления текстильных материалов бытового назначения. Из группы синтетических волокон в наибольших масштабах используются полиамидные (капрон, найлон), полиэфирные (лавсан, терилен) и полиакрилонитрильные (нитрон, орлон) волокна. В дальнейшем в сырьевом балансе текстильной промышленности займут достойное место такие синтетические волокна, как, например, полиолефиновые (полипропиленовое), полихлорвини-ловые (хлорин), поливинилспиртовые (винол). [c.7]

    Гидрофобные синтетические волокна отличаются от гидрофильных природных и химических волокон прежде всего тем, что они не набухают в воде и водных растворах, поэтому требуются какие-то иные способы повышения восприимчивости гидрофобных синтетических волокон к красителям, например повышение температуры. В обычных условиях (20—25 °С) макромолекулы термопластичных синтетических полимеров находятся как бы в замороженном, застеклованном состоянии и не способны к каким-либо перемещениям. При повышении температуры в определенный момент происходит расстекловывание полимера, т. е. возникает явление сегментальной подвижности макромолекул, что приводит к образованию в аморфных областях волокна свободных пространств, достаточных для прохода молекул красителя. Температура, при которой происходит изменение сегментальной подвижности макромолекул волокнообразующего гидрофобного полимера, называется температурой стеклования. О том, насколько эффективен температурный фактор при краш1ении гидрофобных синтетических волокон в водной среде, можно судить по следующим экспериментальным данным. При 100 °С коэффициент диффузии красителя в полиэфирном волокне, характеризующий скорость проникновения красителя в волокно, составляет 10 —10см /с. Повышение температуры до 150—230°С приводит к увеличению этого показателя до 10 °—10 см /с. С примерно такими же скоростями диффундируют красители в набухшие в воде гидрофильные волокна при 100°С. [c.48]

    Кубовые красители в виде натриевых солей лейкосоединений не имеют сродства к синтетическим волокнам и способны прочно фиксироваться на этих волокнах только в форме нерастворимых пигментов. Поэтому крашение тканей из целлюлозных и, например, полиэфирных волокон кубовыми красителями осуществляется исключительно по двухстадийному суспензионному способу. К применяемым кубовым красителям предъявляются очень высокие требования в отношении степени дисперсности и устойчивости к воздействию высоких температур, используемых при термообработках ткани. Этим требованиям отвечают полиэстреновые (ФРГ) кубовые красители. Их применяют для получения однотонных окрасок на смесях полиэфирных волокон с целлюлозными при крашении по непрерывному способу. Технология крашения такими красителями включает плюсование суспензией красителя, сушку, термообработку в течение 30— 0 с при 205—210 °С для фиксации красителя на полиэфирной составляющей смеси, плюсование восстановительным раствором (гидроксид натрия и дитионит натрия), запаривание для закрепления лейкосоединения кубового красителя на целлюлозном волокне, окислительную обработку, промывку, сушку. [c.171]

    В последние годы получены разнообразные синтетические волокна, например поливинилхлоридные (хлориновые), полиамидные, полиэфирные, полиакрилонитрильные, полиолефиновые и фторло-новые - .  [c.171]

    Терефталевая кислота представляет собой главное сырье в синтезе полиэфирных волокон с линейными (этиленгликоль, гекса-метиленгликоль) или симметрично разветвленными гликолями (2,2-диметилтриметилен гликоль) терефталевая кислота образует макромолекулярные сополимеры, имеющие температуру плавления около 255° С и обладающие значительными прядильными свойствами. Сополимеры терефталевой кислоты с этиленгликолем известны под названиями терон, терилен, дакрон как синтетические волокна они получают все большее и большее экономическое значение вследствие их особой прочности при растяжении, термостойкости, стабильности формы (ткачество), светостойкости, низкой способности смачивания и др. применяются также как прозрачный пластический материал и как тугоплавкий электрический изолятор. [c.213]

    В Советском Союзе синтетические волокна в 1965 г. планировалось производить в следующих относительных количествах (в %) капрон — 57 анид — 7 энант — 0,4 нитрон—15,8 полиэфирные волокна — 16 полио-лефиновые волокна — 1,5 прочие волокна — 2,3. [c.197]

    Современная нефтецерерабатывающая промышленность позволяет получать различные ароматические углеводороды бензол, толуол, ксилол, этилбензол и нафталин. В последнее время в связи с появившимся интересом к моноциклическим ароматическим углеводородам С9 и С 1.0 возник вопрос о их выделении из продуктов риформинга. Из бензола в основном получают следующие продукты синтетический каучук (бутадиен-стирольный), пластические массы (полистирол, феноло-формальдегидные смолы и др.), синтетические волокна полиамидные, полиэфирные и др.) и моющие вещества (сульфонол и др.). [c.16]


Смотреть страницы где упоминается термин Синтетические волокна полиэфирные: [c.517]    [c.29]    [c.41]    [c.106]    [c.25]    [c.159]    [c.198]    [c.587]    [c.16]    [c.81]   
Общая химическая технология органических веществ (1966) -- [ c.389 , c.409 , c.440 , c.474 , c.475 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэфирные Moi poB

Полиэфирные волокна

Полиэфирные волокна волокон

Полиэфирные волокна полиэфирные

Синтетические волокна

Синтетические волокна полиэфирные Полиэфирные волокна



© 2025 chem21.info Реклама на сайте