Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механическая прочность синтетических пластмасс

    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]


    Сложные пластмассы состоят из нескольких компонентов, а именно 1) связующее вещество — основной колшонент пластмассы в качестве такового служит та или иная синтетическая смола 2) наполнители — компоненты, повышающие механическую прочность изделия сюда относятся древесная мука, ткань, слюда, асбест, тальк, графит, стеклянное волокно и ряд других материалов -3) пластификаторы — добавки,, придающие пластмассе большую пластичность и устраняющие ее хрупкость (слово пластификатор по-русски обозначает делающий пластичным ) сюда относится ряд органических соединений (кетоны, гликоляты, фталаты и др.). Пластификаторы облегчают обработку пластмассы 4) красители — пигменты, сообщающие пластикам требуемую окраску. Применяют также и другие добавки (антиокислители, ускорители процесса сшивания макромолекул высокополимеров и др.). [c.251]

    Первыми чисто синтетическими пластмассами были фенопласты бакелит (США, 1907 г.), карболит (Россия, 1913 г.). После первой мировой войны были получены аминопласты. Начиная с тридцатых годов большое промышленное значение начинают приобретать полистирол, поливинилхлорид, полиметилметакрилат (органическое стекло) и др. Сороковые годы характеризуются весьма быстрым развитием промышленности пластмасс и появлением новых полимеров кремнийорганических, полиамидных (капрон и др.), полиуретановых и др. Налажено производство пластмасс с такими свойствами, как высокая термо- и коррозионная стойкость (фторопласты, кремнийорганические смолы), высокая механическая прочность (стеклопластики), малая плотность (поро-и пенопласты). Получено много новых пластмасс с ценными свойствами (поликарбонат, полиформальдегид, пентапласт и др.). [c.5]

    Производство изделий и конструкционных материалов из фенопластов, их применение и свойства. Синтетические пористые материалы, газонаполненные пластмассы — пенопласты обладают комплексом ценных свойств (низкий объемный вес, механическая прочность, высокие тепло-, электро- и звукоизоляционные свойства и т. д.), которые обеспечивают их широкое применение в различных областях техники (самолетостроение, электропромышленность, холодильная техника и ряд других). [c.585]

    Композиционные пластмассы содержат наполнители, пластификаторы, стабилизаторы, красители и др. В качестве наполнителей применяются волокнистые материалы (естественного происхождения и синтетические), древесная мука, тальк, каолин, слюда, кварцевая мука и др. Наполнители повышают механические свойства пластмасс, причем различные наполнители влияют на эти свойства различно. Особенно большую механическую прочность Рис. 6. Схема полимера с редкими имеют пластмассы СО СЛОИСТОЙ поперечными связями структурой С термореактивными [c.20]


    Современная промышленность нуждается в широком ассортименте новых материалов с разнообразными свойствами, сочетающими, например, высокую механическую прочность с малой массой и коррозийной стойкостью, эластичность с теплостойкостью и износостойкостью и т. п. К таким материалам с ценными техническими свойствами относятся высокомолекулярные соединения синтетические смолы и пластмассы, каучуки и резины, целлюлоза, химические волокна, пленки, лаки, клеи. [c.279]

    То же положение о прогрессивной полимеризации или агрегации применяется к органическим пластмассам и силикатным стеклам. Бергер попытался рассмотреть явление сдвига внутримолекулярного равновесия в зависимости от температуры. Его представления до некоторой степени аналогичны теории Смитса об аллотропических фазах. При низких температурах, отвечающих вязкости ниже 10 пуазов, ионы натрия в обычном натриево-кальциево-силикатном стекле адсорбированы на весьма сложном каркасе структуры тем не менее они (бьшают иодшжиыми только в сильных электростатических полях. Агрегация, строго говоря, подобна переходу коллоидного раствора желатина в гель в стеклах же отдельные ионы или молекулы образуют агломераты, совместно выделяясь из расплава. Расположение ионов кальция в силикатном каркасе закреплено значительно прочнее. Согласно правилам Захариасена, повышение полимеризации жесткого каркаса, содержащего включенные в него катионы, происходит при снижении температуры (см. А. П, 210 и 211). Правильность этого предположения подтверждается тем, что, согласно Штаудингеру и Хёйеру , механическая прочность синтетических пластмасс возрастает параллельно прогрессирующей полимеризации до прочности жестких каркасов этот процесс в деталях соответствует процессу затвердевания стекла. [c.209]

    Волокна на основе неорганических окислов значительно повышают механическую прочность абляционных пластмасс. Следовательно, эти волокна можно использовать в условиях воздействия высоких механических сил давления и сдвига. При высокотемпературном воздействии неорганические волокна остаются по существу невредимыми Б раскаленном обуглероженном слое. Поэтому они способны механически упрочнять слабый разлагающийся поверхностный слой и прочно связывать его с неповрежденным материалом последующих слоев. Волокна на основе неорганических окислов, находящиеся в поверхностном разрушающемся слое, могут подвергаться плавлению и при этом образовывать капли расплава или жидкую пленку. В этом случае скорость абляции будет определяться скоростью плавления и испарения неорганического волокна. Благодаря высокой температуре расплавленный окисел может взаимодействовать с твердым обуглероженным остатком связующего на поверхности с образованием новых огнеупорных соединений. В процессе интенсивного нагрева в результате эндотермической реакции расплавленного стекловолокна и полилюрного углерода может образоваться карбид кремния . В абляционных пластмассовых композициях успешно применяются углеродные и графитовые огнеупорные волокна, получаемые из синтетических волокон органического происхождения, например из вискозы, путем пиролиза в вакууме или в инертной атмосфере при высоких температурах. Эти волокна не плавятся, обладают чрезвычайно высокими температурами сублимации и повышенной прочностью при высоких температурах. Их применение до настоящего времени было ограничено из-за сравнительно невысокой прочности, окисляемости при высоких температурах и довольно высокой теплопроводности. [c.437]

    Благодаря цепному строению полимеры отличаются гибкостью и большой механической прочностью, пригодны к переработке в тонкие пленки и волокна. Из них получают самые разнообразные изделия — мелко- и крупногабаритные детали машин и механизмов, строительные конструкции, весьма прочные покрытия, устойчивые к действию агрессивных сред, а также высоких и низких температур, изоляционные материалы. Полимеры заменяют легированную сталь и различные металлы, стекло, а вспененные полимеры — пенопласты — используются вместо войлока и ваты в качестве тепло- и звукоизоляционных материалов. Пластмассы стали самостоятельным классом материалов, без которых не мыслится развитие современной техники. От товаров массового спроса до деталей космических кораблей — таково в настоящее время назначение пластмасс. Постоянно растущие запросы народного хозяйства, порождаемые научно-технической революцией, требуют увеличения масштабов производства пластмасс и разработки новых синтетических материалов. [c.5]

    Таким образом, сополимеры на основе кубовых остатков ректификации стирола могут применяться в различных отраслях народного хозяйства при изготовлении клеевых композиций [348], лаков, пластмасс, строительных объектов. Сополимеры из этих кубовых остатков используются для повышения механической прочности, светостойкости и снижения электри-зуемости покрытий полов в композиции на основе синтетического каучука, наполнителя и пигмента [349]. Эти сополимеры вводят в состав покрытий для увеличения адгезии к мокрой поверхности бетона и металла [350]. Раствор смолы на основе кубовых остатков ректификации стирола используют для приготовления безрулонной кровли. [c.134]


    За последние годы ассортимент пластических масс, выпускаемых в Советском Союзе, необычайно расширился. Внедрены в промышленную практику технологические процессы получения новых высокомолекулярных соединений полиэтилена низкого и среднего давления, противоударного полистирола, изотактического полистирола, поликарбонатов, полиформальдегида и др. Путем модификации свойств уже широко известных синтетических смол (фенолоформальдегидных, полиамидных, кремний-органических) получены новые типы смол и пластмасс различного целевого назначения пластмассы повышенной теплостойкости или повышенной химической и механической прочности. Разработаны и внедрены в промышленную практику десятки новых марок пресс-композиций общего и специального назначения. Разработаны и освоены новые технологические процессы переработки пластмасс в изделия. [c.77]

    Из всех природных и синтетических материалов наибольшие достоинства в качестве склеивающих веществ имеют эпоксидные смолы. Они обладают хорошей адгезией как к стеклу, керамике, дереву, пластмассам, так и к металлам. Клеевой шов устойчив к действию воды, неполярных растворителей, кислот и щелочей. Клеевое соединение характеризуется высокой механической прочностью (особенно прочностью на срез) и устойчивостью к вибрационным нагрузкам. [c.680]

    Этому требованию удовлетворяют клеи на основе эпоксидных и фенольных смол, поливинилбутираля и ноливинилформаля, природного и синтетического каучука и др. Они применяются в чистом виде или в смеси. Клеевые соединения должны характеризоваться высокой механической прочностью в связи с различием в коэффициентах расширения пластмасс и металлов. [c.144]

    Композиционные пластмассы содержат наполнители, пластификаторы, стабилизаторы, красители и др. В качестве наполнителей применяются волокнистые материалы (естественного происхождения и синтетические), древесная мука, тальк, каолин, слюда, кварцевая мука и др. Наполнители повышают механические свойства пластмасс, причем различные наполнители влияют на эти свойства различно. Особенно большую механическую прочность [c.20]

    В качестве наполнителей для производства пластмасс применяются материалы органического или неорганического происхождения. Из органических наполнителей используют древесную муку, древесный шпон, хлопчатобумажные хкани, ткани на основе синтетических волокон. Из неорганических наполнителей—асбестовую бумагу или картон, асбестовую ткань, стеклянную ткань или стеклянный войлок, а при изготовлении прессовочных порошков вводят минеральные добавки, играющие роль наполнителя. К наиболее употребительным минеральным добавкам относятся коротковолокнистый асбест, мумия, известь пушонка, тальк, кизельгур, каолин, литопон, слюда, кварцевая мука и др. Для получения на основе данной смолы пластической массы с требуемыми свойствами необходимо выбрать соответствующий наполнитель. От свойства наполнителя зависит механическая прочность изделий, так как наполнитель играет роль своеобразного механического каркаса. Он обуславливает, главным образом, предел прочности при растяжении и статическом изгибе, удельную ударную вязкость, теплостойкость, а в известной степени и электроизоляционные характеристики материала. [c.21]

    В качестве наполнителей для производства пластмасс применяют материалы органического и неорганического происхождения. Из органических наполнителей используют древесную муку, древесный шпон, хлопчатобумажные ткани, ткани на основе синтетических волокон, из неорганических — асбестовую бумагу или картон, асбестовую ткань, стекловолокно, стеклянную ткань или стеклянный войлок, коротковолокиистый асбест, мумию, тальк, кизельгур, каолин, слюду, кварцевую муку и др. От вида и свойств наполнителя зависят многие показатели пластмасс механическая прочность, диэлектрические свойства, коррозионная стойкость и устойчивость в условиях тропического климата, антифрикционные свойства, усадка и многие другие. [c.14]

    Блоксополимеризация делает возможным создание цепных молекул с правильным чередованием выбранных для построения полимера однородных блоков. Ясно, что и этот путь синтеза высокомолекулярных соединений позволяет получать материалы с заранее заданными свойствами. Этим методом, например, из полиэфиров и диизоцианатов получен новый тип синтетического каучука с высокими механическими свойствами и большой стойкостью к трению. Блоксополимеризация жидких тиоколов и эпоксидных смол дает эластичные, твердые и прочные продукты, широко используемые в качестве клеев, защитных покрытий и пластических масс. Блоксополимеры эпоксидных смол с фенольными, полиамидными и другими смолами позволяют создавать пластмассы, обладающие высокой ударной прочностью и теплостойкостью. Из блоков поли-этиленгликоля и терефталевой кислоты получаются высокопрочные волокна. Эти примеры наглядно показывают, сколь перспективен для синтетической химии метод блок-сополимеризации. [c.150]

    Физика высокомолекулярных сое/(инений, или полимеров, — новая, быстро развивающаяся область знания. В отличие от ряда других областей современной физики физика полимеров возникла под непосредственным влиянием техники, широко применяющей полимерные материалы. Полимерами являются каучук, пластмассы, волокнистые вещества — целлюлоза, шерсть, шелк. Само техническое примеяеш е полимеров основывается гла] ным образом на их специфических физических свойствах. Так, техническая ценность каучукоподобпых веществ определяется их способностью к большим обратимым деформациям при малом модуле упругости—высокоэластичностью. В современной электротехнике и радиотехнике играют существенную роль диэлектрические свойства ряда полимеров. Применение и поиски новых волокнистых материалов связаны с их высокой механической прочностью и эластичностью. В этом смысле синтетические и природные полимерные вещества отличаются от большинства практически ценных химических соединений, применение которых основывается именно на их химических с1юйствах. [c.5]

    При практическом применении синтетических полимеров регулирование длины молекулярной цепи конечного продукта имеет решающее значение. Механическая прочность каучуков, пластмасс и волокнообразующих полимеров в целом резко снижается при значениях молекулярного веса менее 20 000—30 ООО. При очень больших значениях молекулярного веса механические свойства приближаются к асимптотическому пределу и не зависят от дальнейшего увеличения длины цепи. Однако такие высокомолекулярные материалы чрезвычайно вязки даже при повышенных температурах, при которых полимеры перерабатываются в изделия различной формы. Следовательно, химик-технолог, имеющий дело с полимерными материалами, должен регулировать молекулярный вес материала как с точки зрения его свойств в условиях промышленного применения, так и с точки зрения технологических характеристик. Цель состоит в использовании возможно более монодисперсного полимера. Практические свойства полидисперсного материала в первом приближении зависят от средневесового значения молекулярного веса. Несмотря на это, другие средние значения молекулярного веса являются полез- [c.34]

    Стеклотекстолит. Исключительно высокой механической прочностью обладают стеклопластмассы, изготовленные на основе стекловолокон и различных смол. Стеклотекстолит относится к группе армированных пластмасс. Это новый тип конструкционного материала, обладающий специфическими ценными свойствами. Стеклотекстолит является комбинацией синтетической смолы, в большинстве случаев термореактивной и усиливающего наполнителя, чаще всего стекловолокна, которое может быть частично или полностью заменено асбестом, а также природным или синтетическим органическим волокном. Применение поликонденсационных смол для изготовления указанных материалов придает последним высокую механическую прочность и химическую стойкость. Трубы из стеклотекстолита со связующим из модифицированной фенолоформальдегидной эпоксидной смолы выдерживают повышенное давление при температуре до 200°. [c.422]

    К группе высокопрочных пластических масс относятся стеклопластмассы, состоящие из полимера, армированного стекловолокном. Наиболее распространенными полимерами в этой группе являются феноло-формальдегидные, эпоксидные и полиэфирные смолы. Большое влияние на механические свойства оказывает структура стекловолокна. Наибольшз о прочность обеспечивает применение стекловолокон в виде стеклоткани, наименьшую прочность имеют пластики из рубленного неориентированного стекловолокна, применяемого в виде матов, промежуточное место занимают пластмассы, в которых стекловолокно находится в виде лент или соломки из ориентированных стеклянных нитей, уложенных чередующимися слоями в двух взаимноперпендикулярных направлениях. Такие же свойства имеют пластики, полученные и при применении пленки, состоящей из той же стеклянной соломки, пропитанной синтетической смолой. [c.129]

    В последние годы все большее применение находят синтетические волокна (полиамидные, полиэфирные, полиакрилони-трильные). Пластмассы, наполненные этими волокнами, характеризуются высокой коррозионной и химической стойкостью, малым коэффициентом трения и высокой износостойкостью. Недостаток этих наполнителей — невысокая теплостойкость и ограниченный выбор полимеров для наполнения, так как многие из них могут влиять на структуру и механические свойства волокна. Для повышения теплостойкости можно использовать углеродные (графитизированные) нити, которые выдерживают температуру выше 2000 °С. Их получают нагреванием полимерных волокон в среде инертного газа до тех пор, пока в результате отщепления атомных группировок от основных цепей не образуются волокна, состоящие из графита. Такие волокна обладают высокими гибкостью и прочностью при низкой плотности, что позволяет получать при их использовании прочные и нехрупкие полимерные материалы. [c.24]


Смотреть страницы где упоминается термин Механическая прочность синтетических пластмасс: [c.5]    [c.48]   
Физическая химия силикатов (1962) -- [ c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Механическая прочность



© 2025 chem21.info Реклама на сайте