Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая коррози

    Под химической коррозией подразумевается прямое взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают в одном акте. Такая кор-ро ия протекает по реакциям, подчиняющимся законам химической кинетики гетерогенных реакций. Примерами химической коррозии являются газовая коррозия выпускного тракта двигателей внутреннего сгорания (под действием отработавших газов) и лопаток турбин газотурбинного двигателя, а также коррозия металлов в топливной системе двигателей (за счет взаимодействия с находящимися в топливах сероводородом и меркаптанами). В результате окисления масла в поршневых двигателях могут образовываться агрессивные органические вещества, вызывающие химическую коррозию вкладышей подшипников [291]. Можно привести и другие примеры. Однако доля химической коррозии в общем объеме коррозионного разрушения металлов относительно мала, основную роль играет электрохимическая коррозия, протекающая, как правило, со значительно большей скоростью, чем химическая. [c.279]


Рис. 6.1. Схема электрохимической коррозии металла а—анодный участок б — катодный участок. Рис. 6.1. Схема <a href="/info/365548">электрохимической коррозии металла</a> а—<a href="/info/522199">анодный участок</a> б — катодный участок.
    На промыслах в той или иной степени наблюдаются все виды коррозии металлов, приводящие к окислению и разрушению элементов системы добычи нефти. Химическая и электрохимическая коррозии могут быть в значительной степени замедлены применением ингибиторов коррозии. [c.192]

    При электрохимической коррозии на аноде всегда происходит процесс Ме+ е- + Н20 - Ме+.Н О + е- [c.280]

    Глава 24. Электрохимическая коррозия металлов 485 [c.485]

    Электрохимическая коррозия встречается чаще других видов коррозионного разрушения и наиболее опасна для металлов. Она может протекать в газовой атмосфере, когда на поверхности металла возможна конденсация влаги (атмосферная коррозия), в почвах (почвенная коррозия), в растворах (жидкостная коррозия). Электрохимическая коррозия подчиняется законам электрохимической кинетики. Скорость ее можно определить на основе закона Фарадея. [c.486]

    До настоящего времени еще не удалось сформулировать такое определение понятия коррозия , которое было бы принято большинством коррозионистов и электрохимиков. Поэтому до разработки соответствующего ГОСТа приходится ограничиться лишь описанием того, что обычно понимается под коррозией металлов. Коррозия представляет собой переход атомов из кристаллической решетки металла в соединение с какими-либо компонентами среды. При этом уменьшается масса металла и изменяются (обычно ухудшаются) многие из его свойств, например его прочностные характеристики, происходит разрушение металла. Причинами, вызывающими коррозию металла, могут быть взаимодействие с компонентами среды (химическая или электрохимическая коррозия), попадание в металлоконструкции блуждающих токов и возникновение зон разрушения — анодных участков (электрокоррозия). Часто эти процессы накладываются друг на друга их протеканию может способствовать жизнедеятельность различных микроорганизмов (биокоррозия). [c.485]

    Необходимым условием электрохимической коррозии является совмещение на поверхности корродирующего металла реакций ио- [c.490]

    Причиной разрушения теплообменных аппаратов, обогреваемых горячей водой, водяным паром и другими теплоносителями, может быть также электрохимическая коррозия, возникающая при воздействии содержащихся в воде кислорода и двуокиси углерода. Электрохимическая коррозия приводит к образованию на поверхности металла окислов железа. Скорость ее протекания возрастает при высоких температурах и давлениях. [c.145]


    Защитные свойства нефтепродуктов могут быть улучшены только с помощью присадок — ингибиторов коррозии, способных к повышению смачивающей способности нефтепродуктов по отношению к металлам в системе нефтепродукт + вода, к торможению анодного, катодного (или одновременно катодного и анодного) процессов электрохимической коррозии и к образованию на поверхности металла, освобожденной от адсорбированной пленки воды, прочных адсорбционно-хемосорбционных защитных пленок. Эта закономерность более подробно рассмотрена в следующем разделе. [c.291]

    Такое разнообразие причин электрохимической неоднородности поверхности металла свидетельствует о том, что практически всегда имеются условия (при наличии электролита) для электрохимической коррозии металлов. [c.279]

    Для изучения механизма коррозии металлов в обводненных нефтепрод тах и для разработки эффективных практических мер борьбы с электрохимической коррозией металлов в топливах, маслах и смазках необходимо знать состав водных конденсатов, образующихся на металлической поверхности. Хроматографическими и спектрофотометрическими исследованиями показано, что водные конденсаты, образующиеся на металлических поверхностях, имеют довольно сложный состав и содержат, как правило, продукты окисления углеводородных и неуглеводородных молекул. Эти конденсаты представляют собой электролиты, в присутствии которых развиваются процессы электрохимической коррозии металлов. [c.283]

    Следовательно, при электрохимической коррозии в объеме электролита накапливается значительное количество гидроксил-ионов, способных образовывать с ионами металлов соответствующие гидроксиды. [c.280]

    Таким образом, трение в сочетании с химической и электрохимической коррозией приводит к значительному износу деталей, причем коррозионный фактор является превалирующим [311]. [c.282]

    Применительно к процессам электрохимической коррозии соединения, содержащие амино-, амидо- и имидогруппы, склонны [c.301]

    Электрохимическая коррозия бронзы протекает с преимущественным переходом в раствор менее благородного компонента сплава — свинца, стационарный потенциал которого равен —0,27В. На рис. 6.7 приведены кривые, характеризующие изменение во времени электродных потенциалов основных элементов, входящих в состав бронзы. Из приведенных данных следует, что потенциал бронзы со временем приближается к потенциалу меди. Это связано с тем, что при контакте бронзы и раствора бензолсульфокислоты с поверхности металла начинает переходить в раствор преимущественно свинец, и поверхность обогащается медью. В реальных условиях в обводненном топливе тоже происходит преимущественное анодное растворение свинца. [c.287]

    В присутствии сернистых соединений состав продуктов коррозии претерпевает заметные изменения. Как показано выше, сульфокислоты принимают непосредственное участие в развитии электрохимической коррозии, выступая в роли эффективного катодного деполяризатора. Восстановление сульфокислот на катодных участках может происходить по двум направлениям восстановление до сульфиновых кислот [c.289]

    Применительно к водорастворимым ПАВ деление ингибиторов коррозии на анодные и катодные осуществляют по способности этих соединений тормозить анодную и катодную составляющую электрохимической коррозии. [c.300]

    Питание котлов-утилизаторов должно быть бесперебойным. Для этого необходимо иметь всегда в рабочем состоянии резервные насосы. Недостаточная очистка воды, питающей котел-утилизатор, приводит к образованию накипи на стенках труб котлов, к появлению межкристаллитной и электрохимической коррозии. Ввиду плохой теплопроводности накипи и недостаточного охлаждения металла в местах ее отложения возрастает температура стенок дымогарных труб и появляются местные перегревы, приводящие к деформации и даже к разрыву труб. При увеличенной концентрации солей и щелочей в питающей воде, в металле котла в местах местных механических перенапряжений (поверхность развальцовки труб в решетке) может возникнуть так называемая межкристаллитная коррозия. [c.43]

    В котлах-утилизаторах возможна и электрохимическая коррозия металла, вызываемая кислородом и двуокисью углерода, содержащимися в воде. Наиболее активным корродирующим элементом в данном случае является кислород. [c.43]

    Важно своевременно выявить начало межкристаллитной и электрохимической коррозии, чтобы предотвратить возможную аварию котла-утилизатора. Для этого необходимо во время ремонта вскрыть аппарат и осмотреть все возможные места коррозии. [c.43]

    Обычно смазочное масло защищает также детали двигателей от электрохимической коррозии в процессе эксплуатации и длительного хранения, хотя в последние годы для этих целей все шире применяют специальные рабоче-консервационные масла. [c.60]

    При эксплуатации автотракторной, авиационной и других видов техники возникают перерывы в работе, в течение которых, если не принимаются специальные меры защиты, на смазываемых поверхностях развиваются под пленкой масла процессы электрохимической коррозии. Основное средство борьбы с поражением металлических поверхностей — применение ингибированных масел, т. е. масел, содержащих эффективные защитные присадки. [c.103]


    Во многих случаях в зарубежные масла вводят ингибиторы коррозии с целью улучшения их способности защищать во время эксплуатации смазываемые поверхности от электрохимической коррозии. Несмотря на то, что такие масла не предназначаются для консервации техники, их можно также рассматривать как рабоче-консервационные. В качестве примера можно привести маловязкие масла по спецификации М11.-Ь-6085, применяемые в авиационных приборах и электронном оборудовании, универсальные трансмиссионные масла по спецификации М1Ь-Ь-2105, высоковязкие масла для открытых редукторов по спецификации ОЕР-2302 и многие другие. [c.113]

    Кинетическое истолкование явлений электрохимической коррозии было впервые предложено А. Н. Фрумкиным (1932), который обратил внимание на то, что процесс разложения амальгам щелочных металлов подчиняется законам электрохимической кинетики. Эта идея была развита затем количественно Вагнером и Траудом (1938), которым удалось показать хорошее согласие теории с экс-периментальными данными по скоростям разложения амальгам Цинка. Близкие взгляды были высказаны А. И. Шультиным, Я- В. Дурдиным и рядом других авторов. Плодотворность использования закономерностей электрохимической кинетики для количественного описания коррозии твердых металлов была показана Я. М. Колотыркиным, а также В. В. Скорчеллетти, М. Грином и др. Работы этих ученых оказали значительное влияние на развитие современных взглядов на процессы коррозии и способствовали установлению связи между электрохимической наукой и учением о коррозии металлов. Кинетическую теорию коррозии часто неудачно называют гомогенно-электрохимической теорией или гомогенно-электрохимическим механизмом коррозии. К процессу коррозии, всегда протекающему на границе раздела минимум двух фаз, т. е. по своей природе типично гетерогенному процессу, не следует применять термин гомогенный . Правильнее называть эту теорию коррозии кинетической теорией. [c.493]

    Справедливость подобного допущени ) для большинства процессов электрохимической коррозии вытекает из экспериментальных данных, полученных Н. Д. Томашевым и Г. В. Акимовым совместно с Л. И. Голубевым, а также из теоретических расчетов А. Н. Фрумкина и др. [c.500]

    Растрескивание металла во влажных сероводородных средах представляет значительно большую опасность, чем обш ая коррозия. Наводороживание и сопутствуюш ее ему растрескивание металла при низких температурах происходит в результате электрохимической коррозии в сероводородных средах. Это разрушение металла возникает внезапно и носит выраженный локальный характер. Весьма сложно предугадать возможность и место возникновения этого вида коррозии и принять меры, предотвращающие разрушение. [c.148]

    Маловязкие рабоче-консервационные масла общего назначения выпускают в Англии по спецификации S. 31118, а в США — по федеральной спецификации VV-L-800A [22]. Масла содержат про-тивоизносную, антиокислительную, депрессорную, загущающую и защитную присадки. Их основные достоинства — высокие защитные и водовытесняющие свойства, благодаря которым масла надежно защищают черные и цветные металлы от электрохимической коррозии, в частности в зоне контакта стали с медью. Хорошие низкотемпературные свойства и высокая термоокислительная ста-бильно сть обеспечивают возможность применения масел в интервале температур от —57 до 150 °С. [c.113]

    Осмотр трубопровода показал, что разрыв произошел вдоль его боковой поверхности, обращенной в сторону компрессорного отделения. Длина разрыва составила примерно 600 мм с раскрытием на ширину, ранную диаметру трубопровода. По контуру разрыва толщина стенки была в пределах 1—3 мм. При осмотре внутреиней поверхности трубопровода было обнаружено, что она подверглась неравномерной электрохимической коррозии. Толщина стенки трубопровода в нижней зоне, подверженной агрессивному воздействию воды, насыщенной двуокисью углерода, была в пределах 1—7 мм. [c.26]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Участки анодной и катодной реакций всегда разделены, для их протекания необходимо перемещение электронов в металле от анода к катоду и соответствующих ионов в электролите. Таким образом, каждая пара соседних анодного и катодного участков в среде электролита образует короткозамкнутый гальванический элемент. Таких постоянно действующих элементов на поверхности металла образуется огромное количество, причем анодные участт ки обычно разрушаются, В качестве примера, иллюстрирующего сказанное, может быть приведен механизм протекания анодных и катодных процессов при электрохимической коррозии железа [291]  [c.280]

    Однако фактически выпускали масла только двух типов — SAE 75 и SAE 90. В маслах содержались противозадирные и противокоррозионные присадки, что позволяло успешно смазывать этими маслами ведушие мосты легковых автомобилей в условиях высоких скоростей и малых нагрузок и столь же надежно использовать их в ведуших мостах грузовых автомобилей при малых скоростях, но больших нагрузках. В масла вводили защитные присадки, придававшие им способность защищать детали от электрохимической коррозии. [c.90]


Смотреть страницы где упоминается термин Электрохимическая коррози: [c.487]    [c.491]    [c.495]    [c.499]    [c.35]    [c.300]    [c.304]    [c.83]   
Коррозия и защита от коррозии (2002) -- [ c.14 , c.67 , c.68 , c.69 , c.70 , c.71 , c.72 , c.73 , c.74 , c.75 , c.76 , c.77 , c.78 , c.79 , c.80 , c.81 , c.82 , c.83 , c.84 , c.85 , c.86 , c.87 , c.88 , c.89 , c.90 , c.91 , c.92 , c.93 , c.94 , c.95 , c.96 , c.97 , c.98 , c.99 , c.100 , c.101 , c.102 , c.103 , c.104 , c.105 , c.106 , c.107 , c.108 , c.109 , c.110 , c.111 , c.112 , c.113 , c.114 , c.115 ]

Коррозия и защита от коррозии Изд2 (2006) -- [ c.14 , c.67 , c.68 , c.69 , c.70 , c.71 , c.72 , c.73 , c.74 , c.75 , c.76 , c.77 , c.78 , c.79 , c.80 , c.81 , c.82 , c.83 , c.84 , c.85 , c.86 , c.87 , c.88 , c.89 , c.90 , c.91 , c.92 , c.93 , c.94 , c.95 , c.96 , c.97 , c.98 , c.99 , c.100 , c.101 , c.102 , c.103 , c.104 , c.105 , c.106 , c.107 , c.108 , c.109 , c.110 , c.111 , c.112 , c.113 , c.114 , c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия электрохимическая



© 2024 chem21.info Реклама на сайте