Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодичности закон

Таблица Д. И. Менделеева. На основе открытого им периодического закона Менделеев составил периодическую таблицу элементов. Он разбил весь ряд элементов, расположенных по величине атомных масс, на отдельные отрезки, внутри которых начинается и заканчивается периодическое изменение свойств. Чтобы подчеркнуть закон периодичности и превратить непрерывный ряд элементов в периодическую систему, Д. И. Менделеев расположил каждый такой отрезок ряда один под другим. В результате была получена таблица, которую Д. И. Менделеев опубликовал в 1873 г. во втором издании Основ химии . Таблица Д. И. Менделеева. На <a href="/info/1594908">основе открытого</a> им <a href="/info/4817">периодического закона Менделеев</a> составил <a href="/info/132971">периодическую таблицу элементов</a>. Он разбил весь ряд элементов, расположенных по <a href="/info/365301">величине атомных</a> масс, на отдельные отрезки, внутри которых начинается и заканчивается <a href="/info/684125">периодическое изменение свойств</a>. Чтобы подчеркнуть закон периодичности и превратить непрерывный ряд элементов в <a href="/info/807551">периодическую систему</a>, Д. И. Менделеев расположил каждый такой отрезок ряда один под другим. В результате <a href="/info/1330306">была</a> <a href="/info/111771">получена таблица</a>, которую Д. И. <a href="/info/1738431">Менделеев опубликовал</a> в 1873 г. во <a href="/info/1477512">втором издании</a> Основ химии .

    ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА — естественная система химических элементов, созданная гениальным русским химиком Д. И. Менделеевым. Расположив элементы в последовательности возрастания атомных масс и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, закономерности которой теоретически вытекают из сформулированного им периодического закона Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, находятся в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая система элементов Д. И. Менделеева позволяют установить свя ь между всеми химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. Как впоследствии стало известно, периодичность в изменении свойств элементов обусловлена числом электронов в атоме, электронной структурой атома, периодически изменяющейся по мере возрастания числа электронов. Число электронов равно положительному заряду атомного ядра это число равно порядковому (атомному) номеру элемента в периодической системе элементов Д. И. Менделеева. Отсюда современная формулировка периодического закона Свойства элементов, а также свойства образованных ими простых и сложных соединений находятся в периодической зависимости от величины зарядов их атомных ядер (2) . Поскольку атомные массы элементов, как правило, возрастают в той же последовательности, что и заряды атомных ядер, современная форма таблицы периодической системы элементов полностью совпадает с менделеевской, где аргон, кобальт, теллур расположены не в порядке возрастания атомной массы, а на основе их химических свойств. Это несоответствие рассматривалось противниками Д. И. Менделеева как недостаток его системы, но, как позже было доказано, закономерность нарушается в связи с изотопным составом элементов, что также предвидел Д. И. Менделеев. Периодический закон и периодическая система элементов [c.188]

    Согласно формулировке закона Д. И. Менделеева периодичность изменения свойств касается не только химических элементов, но и образуемых ими простых и сложных веществ. Периодичность изменения обнаружена для молярных объемов, температур плавления и кипения, для магнитных и электрических свойств, для теплот образования, теплоемкости и многих других физико-химических свойств, характеризующих простые и сложные вещества. [c.22]


    Объяснение физического смысла Периодического закона представляет собой одно из важнейших достижений квантовой механики в химии. Для понимания природы периодичности необходимо иметь в виду следующее  [c.100]

    Закон периодичности — закон, на котором основана периодическая система элементов периодическое изменение строения электронной оболочки определяет периодичность изменения свойств элементов. [c.373]

    I См. также Закон периодичности (стр. 41). [c.281]

    ДИАЛЕКТИКА ПЕРИОДИЧНОГО ЗАКОНА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ. [c.310]

    Как же складывались у Менделеева формулировки основных понятий учения о периодичности закона периодичности и перио- [c.230]

    Эта формулировка наводит на ответ столб воздуха должен быть электропроводным при разряде молнии и должен быть неэлектропроводным в остальное время. Разряд молнии сравнительно редкое явление, к тому же очень быстро проходящее. Закон согласования ритмики периодичность появления молниеотвода должна быть та же, что и периодичность появления молнии. [c.196]

    Периодический закон периодичность свойств элементов. Периодический закон бы/ открыт Д. И. Менделеевым в 1869 г. и сформулирован им следующим образом свойства простых тел, такл<е формы и свойства соединений эле- ментов находятся в периодической зависимости от атомных в е с о в э л е м е н то в. 1 [c.33]

    Строение атомов и периодическая система элементов Д. И. Менделеева. Периодический закон был установлен Д. И. Менделеевым в 1869 г. В то время атом еще считался неделимой частицей и причины периодичности свойств элементов не могли быть выявлены. [c.39]

    В книге также раскрыта единая концептуальная природа "периодичности", открытой Д. И. Менделеевым, и закона "О повторяемости в развитии". Убедительно показано, что периодичность (в том числе и Периодический закон) - только частный случай более широкого закона природы "О повторяемости...", одним из проявлений которого является спиральность в развитии. [c.2]

    Но Ньюлендс этого не сделал, что стоило ему потери приоритета. Он соблазнился числом "8", его сходством с музыкальными октавами, сделал даже попытку подвести увиденное под закон, назвав его "законом октав". Увлекшись внешними, второстепенными характеристиками химических элементов, он упустил главную суть открывшейся картины — повторяемость свойств химических элементов. Если бы в названии закона он употребил слово "повторяемость", то ничто не смогло бы перебить его приоритета в открытии закона. Ведь главное слово в законе, который потом открыл Менделеев, не периодичность, а повторяемость. Только в последующие годы оно трансформировалось в "периодическую повторяемость", а потом, и вообще, в "периодичность". В результате произошло незаслуженное ретуширование главного слова в открытом законе и, естественно, искажение его истинного смысла. Открыт был не Периодический закон, а Закон повторяемости в развитии. Второе понятие и шире, и определеннее. [c.37]

    Хотя Менделеев и говорил об открытии закона периодичности , но сути его до конца не понимал, потому и отложил формулировку закона до 1871 г., когда система приобрела более совершенную форму. Это еще раз говорит о том, что в логико-временной последовательности познания таблица первична, а Периодический закон — вторичен. [c.53]

    Помещенные ниже вопросы были подготовлены д-ром Джейн Реймонд из Калифорнийского технологического института для использования на двухступенчатых экзаменах в Лос-анджелесском отделении Американского химического общества, проводимых там в порядке ежегодных олимпиад для местных старшеклассников. Экзамены предусматривают охват всех аспектов общей химии. Обычно они проводятся в две стадии первая включает те темы общей химии, которые должны входить во все начальные курсы, например периодичность, газовые законы, равновесие во второй — учащиеся имеют дело с более сложным материалом, например с органической химией, элементами теории кристаллического поля, биохимией, термодинамикой. [c.582]

    И действительно, прошло уже более 128 лет с того дня, когда Д. И. Менделеев построил свою первую систему элементов, но до сих пор тема, связанная с изучением естественного множества атомов, привлекает пристальное внимание ученых. Вроде бы все химические элементы разместили в таблице и саму таблицу структурно усовершенствовали, и природу периодичности объяснили, и Периодический закон сформулировали, а ученые все не унимаются. Почему Что еще не удовлетворяет их в этой, казалось бы, вдоль и поперек изученной проблеме  [c.143]

    Как видно на спиральной модели системы, отнесение всех лантаноидов и актиноидов к 3-й валентной группе было ошибочным. Закон периодичности здесь оказался бессильным. Центр тяжести пришлось переносить на другой посошок — опереться на непрерывную законность. [c.187]

    Двум главным структурообразующим факторам направленной и ненаправленной составляющим связи, соединяющей структурные единицы в строении твердых веществ, отвечают два разных состояния твердого вещества, а именно плотнейшая упаковка при крайне бедном энергией кристаллическом состоянии и разуплотненная структура богатого энергией состояния, по традиции называемого аморфным, т. е. бесструктурным, хотя, как известно, аморфные вещества имеют структуру, которая, так же как и для кристаллических веществ, в конечном счете определяется теми же квантовыми законами. Заметим, что структуру аморфных веществ уже более сорока лет успешно изучают рентгено- и электронографическими, а также нейтронографическими дифракционными методами. В отличие от кристаллических веществ, для которых характерна трехмерная периодичность и симметричность строения, аморфные вещества имеют непериодическую структуру, не подчиняющуюся законам симметрии. [c.160]


    Современная теория строения атомов и молекул неопровержимо свидетельствует о том, что основой периодического закона является строение электронных оболочек атомов химических элементов. Важнейшая химическая характеристика элементов главных подгрупп — валентность атомов — определяется структурой внешнего электронного слоя, конкретнее — числом неспаренных электронов. Строго обусловленные причины предопределяют периодичность заполнения электронных уровней в атомах с увеличением атомного номера, т. е. с возрастанием числа электронов. Это в свою очередь обусловливает периодическое изменение числа неспаренных элект  [c.18]

    Из изложенного выше следует, что в ряду атомов с последовательно возрастающим порядковым номером (или зарядом ядра) также последовательно увеличивается число электронов в них. Это, в свою очередь, приводит к периодическому повторению подобных конфигураций их электронных оболочек и подоболочек. Большинство же физико-химических и химических свойств элементов сильно зависят именно от строения внешних электронных подоболочек. Поэтому главной причиной периодичности свойств элементов является периодическое появление однотипных электронных конфигураций внешних электронных подоболочек с ростом заряда ядра атома элемента. В связи с этим современная формулировка периодического закона гласит  [c.79]

    Известны различные формулировки второго закона термодинамики. В качестве аксиомы может быть принята невозможность самопроизвольного перехода тепла от менее нагретого тела к более нагретому. В наиболее принятой системе изложения термодинамики второй закон формулируется как утверждение невозможности создания вечного двигателя второго рода, т. е. машины, которая периодически превращает тепло среды при постоянной температуре в работу. В этом определении важно подчеркнуть требование периодичности действия такой машины, так как вполне возможно однократное превращение тепла в работу при постоянной температуре, как это может быть, например, при изотермическом расширении идеального газа. Однако для того, чтобы машина действовала периодически, необходимо вновь сжать расширившийся газ и затратить на это полученную работу. [c.29]

    В качестве КЭ при определении оптихмальной периодичности между профилактиками можно использовать также минимум средних потерь, приходящихся на единицу времени работы системы С(х) [125]. Следует от.метить, что в работе [125] рассматриваются тольта два состояния системы, которые условно названы хорошим и плохим . Если при 1профилактическом осмотре система окажется в плохом состоянии, то осуществляется профилактический ремонт, если в хорошем , то ремонт не производится. Считается, что отказы возможны как при плохом , так и при хорошем состоянии системы. Для определения оптимальной периодичности профилактического обслуживания необходимо иметь вид законов распределения таких случайных величин, как длительность интервала времени до отказа в хорошем и плохом состояниях системы, длительность нахождения системы в хорошем состоянии. [c.94]

    Замена атомной массы зарядом ядра была первым шагом в раскрытии физического смысла периодического закона. Далее, было важно установить причины возникновения периодичности, характер периодической функции зависимости свойств от заряда ядра, объяснить величины периодов, число редкоземельных элементов и пр. [c.455]

    В следующих трех формулировках второго закона термодинамики указывается на периодичность действия машины и периодичность процесса. [c.75]

    Почему в этих формулировках подчеркивается периодичность процесса и действия машины Докажите, что эти формулировки законов совпадают с формулировками в 12-7. [c.75]

    Менделеев так смело и творчески применял закон периодичности потому, что считал его объективным законом природы. [c.77]

    Выяснив топологию изочастотных поверхностей у границ полосы собственных частот, заметим, что в силу свойств периодичности закона дисперсии точки, в которых м = О и со = сОт, должны периодически повторяться в обратном пространстве. Для изображения соответствующих геометрических образов рассмотрим пример достаточно симметричного кристалла, частоты колебаний которого принимают максимальные значения только в вершинах элементарной ячейки обратной решетки. [c.53]

    При изучении свойств растворов нередко прослеживаются проявления периодического закона. Покажем это на примере тепловых эффектов. Из таблиц, в которых собраны значения ЛЯм8 образования различных ионов, вытекает закономерный ход этих величин в ряду сходных частиц (например, С1 —Вг"—Г). Рассматривая в одинаковых условиях совокупность значений теплот растворения родственных соединений, легко обнаружить периодичность в ее изменении. Даже если учесть неполноту данных, представленных на рис. 44, и невысокую точность значений теплот растворения некоторых хлоридов, все же можно прийти к выводу о существовании определенной закономерности в ходе этих характеристик растворов. В подобных закономерностях содержатся и количественные соотношения. Один из мыслимых примеров представлен на рис. 45, на котором сопоставлены теплоты растворения хлоридов и бромидов щелочных металлов пц =-о°). [c.149]

    Сущность периодического закона. Исследуя изменения свойств химических элементов, расположенных в ряд ио возрастаюн1им значениям их атомной массы, Менделеев установил, что сходные в химическом отношении элементы встречаются через правильные промежутки (числа элементов) и, таким образом, одни и те же свойства периодически повторяются в этом ряду. На этом основании Менделеев н вывел периодический закон, или, как он его назвал, закон периодичности, который сформулировал первоначально следующим образом  [c.35]

    Итак, в естественном ряду элементов (т. е. элементов, расположенных в порядке возрастания атомной массы) их химические свойства изменяются не монотонно, а периодически. Закономерное изменение свойств элементов в пределах одного отрезка естественного ряда (Ы — Г) повторяются и у других (Ка — С1, К — Вг). Иначе говоря, сходные в химическом отношении элементы встречаются в естественном ряду через правильные интервалы и, следовательно, повторяются периодически. Эта о дмечательная закономерность, обнаруженная Д. И. Менделеевым и названная им законом периодичности, была сформулирована следующим образом  [c.20]

    Открытый закон периодичности Д. И. М е н д е л е е в использовал для создания периодической системы элементов. Днем рождения системы Д. И. Менделеева обычно считают 18 февраля 1869 г., когда был составлен первый вариант таблицы. В этой таблице 63 известных Д. И. Менделееву элемента были расположены в порядке возрастания атомных масс. Это расположение отражало также периодичность изменения свойств элементов. В таблице былр оставлены пустые места для четырех еще не открытых элементов с атомными массами 45, 68, 70 и 180. Существование их было предсказано Д. И. Менделеевым. [c.20]

    Закон периодичности и периодическая система элементов сыграли важную конструктивную роль при проверке и уточнении свойств многих элементов. Однако наотоящий триумф периодической системы Д. И. Менделеева был связан с открытием предсказанных им элементов. В 1875 г. французский химик П. Лекок де Буа-б о д р а н, исследуя цинковые руды методами спектрального анализа, обнаружил следы неизвестного элемента. Открытие этого элемента, названного галлием, быть может, прошло бы незаметным, если бы некоторое время спустя автор не получил письмо от русского ученого, в котором утверждалось, что плотность нового элемента должна [c.20]

    Непрерывные многосменные производства требуют непрерывного обслуживания, т. е. круглосуточной работы обслуживающего персонала, организация которой оформляется в виде графиков сменности. Они должны обеспечивать предоставление работникам времени отдыха, предусмотренного законом, нормальную периодичность пересмен, нормальные междусменные и еженедельные перерывы на отдых, приближение фактического количества часов работы в месяц к нормальному, предотвратить обезличку и создать равные условия труда для всех сменщиков. [c.68]

    В одночасье родились два новых ионятия — повторяемость и периоды , породившие вскоре синтетические термины периодическая повторяемость и периодический закон . А еще, некоторое время спустя (мы любим упрощать ), выражение периодическая повторяемость трансформировалось в периодичность". Так, постепенно и незаметно слово (несущее главную идею открытия) повторяемость выпало из научного употребления. Как уже отмечалось, сегодня существует учение о периодичности, что тоже некорректно. Правильнее говорить — учение о системной организации атомов (химических элементов) вещества. [c.147]

    Развитие, в котором имеет место как поступательное движение вперед, так и возвраты к старому (попятность), называется в диалектико-материалистической теории познания противоречивым развитием. В его основе лежат две противоположные тенденции (противоборствующие силы) — поступательность (непрерывность) и попятность (возвраты). В свете этого учения, периодичность изменения свойств химических элементов является только частным случаем более широкого явления природы — повторяемости. Периодичность — это повторяемость от периода к периоду. Следовательно, Периодический закон — только частный случай более широкого закона природы, закона повторяемости в процессе развития в природе, обществе и познании. [c.150]

    Спиральная система помогает понять и ошибочность отнесения всех лантаноидов и актиноидов к 3-й валентной группе. Закон периодичности здесь оказался бессильным. И снова (уже в который раз ) приходится подчеркивать, что развитие ряда химических элементов содержит в себе две тенденции непрерывную (поступательную) и прерывную (попятную). Периодический закон опирается на вторую из них. Первая же тенденция остается в тени, вне действия Закона. А между тем она по своей сути тоже законность, непрерывная законность, однопорядковая с периодической законностью. Совокупно они рождают новую, спиральную законность изменения свойств химических элементов, законность более высокого порядка. Это явление носит в природе универсальный характер. Академик А. Е. Ферсман [16] наблюдал подобное явление в геохимических циклах. В каждом цикле, — ппщет он, — обнаруживаются две тенденции одна направлена на замыкание цикла, а другая — на формирование спирали. Обратимые процессы формируют тенденции к замыканию цикла, к движению по кругу, а всеобщее свойство материн — развитие обусловливает в единстве с первым спиральность геологических циклов . [c.173]

    Шишокин В. П. Основная и дополнительная периодичность в системе Менделеева И Периодический закон и строение атома Сб,— М. Атомиздат, 1971.— С. 118. [c.208]

    Кольца Лизеганга. Когда два вещества, реагируя, образуют нерастворимый осадок, то в условиях взаимной встречной диффузии этих двух веществ их кристаллизация во времени и пространстве происходит периодически — осадок продукта образует в пространстве характерные кольца. Пространственная периодичность связана со следующими обстоятельствами. Кристаллизация начинается там и тогда, где и когда произведение концентраций реагентов становится больше некоторой критической величины. Как только появились зародыши кристаллизации, начинается их рост за счет диффузии реагентов из окружающего пространства, поэтому осадок образуется в определенных зонах. Если пространство заполнено одним компонентом (например, аммиаком), а другой компонент (например, хлористый водород) истекает в одной точке (точечный источник), то образование осадка ЫН4С1 наблюдается в пространстве в виде сфер, расстояние между которыми подчиняется закону геометрической прогрессии. [c.301]


Библиография для Периодичности закон: [c.184]   
Смотреть страницы где упоминается термин Периодичности закон: [c.150]    [c.325]    [c.41]    [c.2]    [c.5]    [c.78]    [c.19]    [c.425]    [c.83]    [c.22]   
Справочник Химия изд.2 (2000) -- [ c.100 ]




ПОИСК







© 2025 chem21.info Реклама на сайте