Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепные реакции окисления

    Активными центрами, генерирующими цепные реакции окисления углеводородов, являются короткоживущие активные свободные радикалы. [c.29]

    Гомогенно-каталитические реакции в газовой фазе протекают обычно по механизму цепных реакций. Примером может служить гомогенный катализ цепной реакции окисления окиси углерода в двуокись углерода в присутствии следов водяного пара. Реакция начинается с образования атома кислорода (активного центра)  [c.413]


    Цепную реакцию окисления можно представить в виде цикла [c.97]

    Механизм реакции. Механизм радикальных цепных реакций окисления высших парафинов допускает возможность образования большого числа соединений. [c.152]

    В этом разделе рассматриваются радикально-цепные реакции окисления по уже имеющимся в молекуле функциональным группам альдегидным (получение надкислот, карбоновых кислот и ангидридов) и гидроксильным во вторичных спиртах (получение кетонов и пероксида водорода). [c.404]

    Механизм действия присадок, повышающих цетановое число топлив, принято объяснять на основании теории цепных реакций окисления. Считают, что присадки ускоряют начальные предпламенные реакции, способствуют разветвлению окислительных цепей и образованию новых начальных центров реакции. Это происходит в результате разложения присадки или образования про- [c.65]

    Первое затруднение было связано с тем, что цепные реакции окисления сильно экзотермичны. В результате их протекания образуется сложная смесь кислородсодержащих соединений, из которых паиболее цепные продукты, как правило, являются промежуточными соединениями, способными в свою очередь в условиях проведения реакций окисления подвергаться дальнейшим превращениям с гораздо большими скоростями, чем исходные компоненты реагирующей смеси. Образно говоря, экзотермические цепные реакции окисления стремятся к полному своему завершению, приводящему к сгоранию углеводорода до СО2 и Н2О. [c.82]

    При изучении цепной реакции окисления изопропилбензола [c.399]

    Цикл можно разорвать , выводя из системы или пероксидный радикал НОг-, или алкильный радикал К-. В соответствии с этим ингибиторы, обрывающие цепную реакцию окисления, можно разделить на следующие две группы [165], [c.97]

    Синергизм в инициированном окислении. Если цепную реакцию окисления инициирует инертное по отношению к ингибитору соединение, например, азосоединение, то перечисленные выше механизмы, создающие синергизм в автоокислении, в этом [c.129]

    Как уже указывалось в начале параграфа, в цепных реакциях окисления молекулярным кислородом первичные продукты окисления, как правило, более лабильны, чем исходный углеводород, и поэтому вовлекаются в цепные процессы распада или окисления. [c.347]

    Высокие антидетонационные свойства метанола в сочетании с возможностью его производства из ненефтяного сырья позволяют рассматривать этот продукт в качестве перспективного высокооктанового компонента автомобильных бензинов, получивших название бензино-метанольных смесей. Оптимальная добавка метанола—от 5 до 20% при таких концентрациях бензино-спиртовая смесь характеризуется удовлетворительными эксплуатационными свойствами и дает заметный экономический эффект. Добавка метанола к бензину снижает теплоту сгорания топлива и стехиометрический коэффициент при незначительных изменениях теплоты сгорания топливовоздушной смеси. Вследствие изменения стехиометрических характеристик использование 15%-й добавки метанола (смесь М15) в стандартной системе питания ведет к обеднению топливовоздушной смеси примерно на 7%. В то же время при введении метанола повышается октановое число топлива (в среднем па 3—8 единиц для 15%-й добавки), что позволяет компенсировать ухудшение энергетических показателей за счет повышения степени сжатия. Одновременно метанол улучшает процесс сгорания топлива благодаря образованию радикалов, активизирующих цепные реакции окисления. Исследования горения бензино-метанольных смесей в одноцилиндровых двигателях со стандартной и послойной системами смесеобразования показали, что добавка метанола сокращает период задержки воспламенения и продолжительность сгорания топлива. При этом теплоотвод из зоны реакции снижается, а предел обеднения смеси расширяется и становится максимальным для чистого метанола. [c.155]


    Образование водородных связей существенно влияет на кинетику цепных реакций окисления углеводородов в жидкой фазе. Для термических реакций углеводородов и нефтепродуктов образование водородных связей значения, разумеется, не имеет. Влияние на кинетику термических реакций может оказывать образование я-комплексов радикалов с ароматическими углеводородами. Для некоторых радикалов найдено, что константа скорости реакции я-кои плекса радикала [c.117]

    Для повышения детонационной стойкости бензинов к ним добавляют присадки, прерывающие цепные реакции окисления. В качестве такой присадки широко применяется тетраэтилсвинец РЬ(СаН5)4 в последнее время за рубежом начали применять также тетраметил-свинец РЬ(СНя)4 и некоторые соединения марганца. При 200° С тетраэтилсвинец (ТЭС) разлагается с выделением свинца, который [c.101]

    Наиболее эффективным и экономически выгодным способом повышения химической стабильности бензиновых фракций является введение специальных антиокислительных присадок. В качестве таких присадок широко распространены соединения фенольного, аминного и аминофенольного типов. Эти соединения, способные обрывать цепные реакции окисления, тормозят окислительные процессы в бензинах, т. е. увеличивают индукционный период окисления [9]. [c.25]

    Так, цепная реакция крекинга этана начинается с мономолекулярного распада этана по связи С—С в реакции (VHI.1). Цепная реакция окисления уксусного альдегида начинается с образования свободных радикалов при бимолекулярном взаимодействии уксусного альдегида с кислородом [c.269]

    Существенно, что ингибиторами часто являются сами продукты цепной реакции. Это приводит к тому, что в ряде цепных реакций (окисление, крекинг) наблюдается торможение по ходу процесса (самоторможение). В некоторых случаях это приводит к практически полной остановке цепной реакции задолго до израсходования исходных веществ. [c.316]

    Кинетические закономерности процессов термической и окислительной деструкций в основном сходны с кинетическими закономерностями цепных реакций окисления и крекинга углеводородов, описанных в гл. VHI. [c.373]

    Антиокислительные присадки (antioxidants), называемые ингибиторами окисления (oxidation inhibitors), подавляют окисление масла в начальной его стадии путем взаимодействия с первичными продуктами реакции окисления - перекисями, с образованием неактивных соединений, не способных к продолжению цепной реакции окисления. Многие антиокислительные присадки, снижающие образование кислот, уменьшают коррозию, т.е антиокислительные присадки являются одновременно и антикоррозионными присадками. [c.32]

    Как показал анализ, ни молекулярные, ни ионные механизмы взаимодействия КН с кислородом практически не могут реализоваться. Хотя и медленно, но с поддающейся измерению скоростью идет эндотермическая реакция КН-ьОг—>-К -1-Н02. Скорость такой реакции мала. Например, в кумоле при 100"С скорость образования радикалов по этой реакции равна и,= 1,1-10 " моль/(л-с.) [32]. Образовавшиеся в углеводороде алкильные радикалы вызывают цепную реакцию окисления КН до КООН — первичного молекулярного продукта. Протекание цепной реакции окисления обусловлено следующими причинами. [c.27]

    Изложенные выше рассуждения и оценки позволяют однозначно понять, почему углеводороды окисляются по цепному радикальному механизму. Геометрия и прочность С—С- и С—Н-связей в углеводородах с одной стороны и триплетное состояние кислорода с другой препятствуют молекулярной реакции КН с О2. Высокий потенциал ионизации углеводородов, низкое сродство кислорода к электрону, ковалентный характер С—Н-связей и неполярный характер углеводородов как среды препятствуют ионному протеканию реакции окисления. Единственно возможной оказывается гомолитическая реакция КН с кислородом с образованием радикалов К. Несмотря на то что эта реакция эндотермична и протекает очень медленно (см. раздел Кинетика автоокисления углеводородов ), образующиеся радикалы К вызывают цепную реакцию окисления, которая протекает как последовательность многократно повторяющихся актов. Первичным молекулярным продуктом такой цепной реакции является гидропероксид, сравнительно легко распадающийся на свободные радикалы. Таким образом, причиной цепного автоинициированного механизма окисления углеводородов является ковалентный характер их С—Н-связей, высокая активность радикалов К по отношению к кислороду и КОг по отношению к КН, цикличность последовательных радикальных реакций [c.28]

    По реакции In - с гидропероксидом в окисляющемся углеводороде возрождается пероксидный радикал, который продолжает цепную реакцию окисления. Поэтому при введении гидропероксида в окисляющийся углеводород, содержащий ингибитор, скорость обрыва цепей уменьшается и окисление ускоряется [197]. Цепное окисление в присутствии 1пН и ROOH включает следующие реакции  [c.109]


    Паровоздушное пространство технологических аппаратов иногда защищают введением специальных флегматизирующих составов, способных подавлять активные центры цепной реакции окисления, приводить к обрыву цепей и к торможению процесса горения. Более активное флегмати-зирующее действие этих добавок значительно уменьшает их расход по сравнению с негорючими газами. В качестве флегматизирующих добавок наибольшее распространение нашли галоидопроизводные вещества и продукты их распада. [c.79]

    Проявление тех или иных свойств определяется природой СС. Хорошими антикоррозионными присадками могут служить дисульфиды и ксантогенаты [568], противоизносными агентами — алкил- и арилмеркаптаны [571]. Заметной анти-окислительной активностью обладают меркаптаны [578], тиацикланы, диалкил- и алкилциклоалкилсульфиды с длинными алифатическими цепочками [579], а также получаемые из них сульфоксиды [580]. Кроме того, благодаря синергетическим явлениям насыщенные СС значительно повышают эффективность действия других ингибиторов радикально-цепных реакций (окисления, термо- и фотодеструкции, полимеризации), например фенольного и аминного типа [581]. Считается, что антиокислительное действие СС обусловлено их участием в реакциях безрадикального разрушения пероксидов и гидроперекисей [582], например  [c.80]

    Гетерогеннокаталитнческое окисление приобрело большое значение для осуш,ествления ряда процессов, которые нельзя успешно реализовать при помощи радикально-цепных реакций окисления. Среди Ш1Х важнейшими являются следующие  [c.411]

    Г-4. Когда в цепной реакции окисления, описанной Мацуурой и Като, испытывался новый катализатор, было найдено, что кинетические уравнения изменяются по сравнению с уравнением (I, 21)  [c.248]

    Объясняя химизм процесса газификации жидкого топлива и сравнивая его с механизмом частичного окисления газообразного топлива, авторы работ [3, 4, 7] считают, что процесс протекает в две стадии. В первой происходит полное сгорание углеводородов, причем на горение расходуется весь введенный кислород. Во второй стадии происходит конверсия остальных углеводородов с паром и двуокисью углерода. В работе [10] предложен механизм частичного окисления метана в факеле с учетом образования ацетилена в качестве промежуточного продукта. Согласно этому механизму процесс протекает в три стадии на первой происходит цепная реакция окисления метана и образуются преил1ущественно углеводо- [c.104]

    Эмануэль Н. М., Заиков Г. Е., Майзус 3. К Роль среды в радикально-цепных реакциях окисления органических соединений. Минск, Наука и техника, 1975. [c.289]

    Антиокислительные присадки предохраняют углеводороды от окисления, взаимодействуя с образующимися свободными радикалами (R- и ROO-J или переводя гидроперекиси (ROOH) в устойчивое состояние, обрывая и не допуская тем самым развития, цепной реакции. Такие присадки относятся к группе ингибиторов окисления, наиболее широко применяемых в маслах. В зависимости от состава ингибитора окисления (алкилфенолы, амины, серо-и фосфорсодержащие вещества) механизм их действия различен. Так, алкилфенолы обрывают цепную реакцию окисления, взаимодействуя с перекисными радикалами. Значительное влияние на их. эффективность оказывают строение заместителей и положение их в молекуле органического соединения. Для объяснения действия ингибиторов окисления аминного типа предложен так называемый механизм прилипания , по которому перекисный радикал образует с молекулой ингибитора радикал — комплекс, взаимодействующий, в свою очередь, с перекисными радикалами. [c.303]

    Наиболее важное свойство трансформаторных масел — стабильность против окисления, т. е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой — 2,6-дитретичным бугилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидньпии радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом. [c.239]

    Количественное изучение реакций вырожденного разветвления может проводиться теми же методами, что и изучение скорости зарождения. Например, скорость цепной реакции окисления (для определенности речь будет идти об окислении в жидкой фазе при значительных давлениях кислорода) равна, согласно (VIII.27) [c.331]

    Во второй стадии цепная реакция окисления затормаживается и основным процессом становится окисление изобутана накопившейся mpem-бутилгидроперекисью до треш-бутилового спирта и [c.397]


Библиография для Цепные реакции окисления: [c.308]    [c.262]    [c.94]    [c.255]   
Смотреть страницы где упоминается термин Цепные реакции окисления: [c.32]    [c.299]    [c.317]    [c.342]   
Основы технологии нефтехимического синтеза (1965) -- [ c.176 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.270 ]

Общая химическая технология Том 2 (1959) -- [ c.365 , c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции окисления

Цепные реакции

Цепные реакции Реакции цепные



© 2025 chem21.info Реклама на сайте