Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нулевая линия нестабильность

    Удовлетворительная работа системы аналогового интегрирования (так же, как и электромеханической системы) зависит от дрейфа нулевой линии хроматографа, сдвиг которой интегрируется, и на выходе интегратора получается наклонная нулевая линия. Аналоговые интеграторы могут компенсировать небольшой дрейф нулевой линии. Нестабильность нуля при интегрировании хроматографических пиков на всю шкалу дает ошибку не более 0,1%. [c.177]


    Другое важное условие для количественной оценки — стабильность ну.чевой линии самописца. Если аппаратура не позволяет выполнить это условие, то применение электронных или электромеханических интеграторов невозможно, так как они установлены на неизменный нулевой потенциал. Причина нестабильности нулевой линии часто кроется в несимметричности моста ячеек для измерения теплопроводности (неточно согласованные измерительные элементы) или в повышенной летучести жидкой фазы, находящейся в нагреваемых колонках. [c.285]

    В качестве чувствительных элементов катарометра применяются металлические нити из платины, вольфрама, сплава платины с родием или полупроводниковые сопротивления—термисторы. Чувствительность катарометра в значительной степени зависит от сопротивления чувствительного элемента — чем больше сопротивление, тем выше чувствительность. Однако с ростом сопротивления увеличиваются также шумы — кратковременная нестабильность нулевой линии, ограничивающая надежность слабых сигналов. Практические размеры металлической нити определяются прочностью нити и легкостью монтажа. По форме чувствительные элементы изготовляются в виде натянутой нити, спирали и биспирали. Иногда ИМ придают и-образную форму. Для прямых или спиральных элементов обычно применяют проволоку от 0,025 до 0,12 5 мм. [c.125]

    Дрейф нулевой линии, или длительная нестабильность, представляет менее серьезную опасность, чем флуктуационные шумы, и поэтому для различных хроматографов величина О обычно нормируется в пределах до 2— 5%- Однако наличие дрейфа ограничивает практическую эффективность анализа, требующего длительного времени, и, безусловно, сказывается на точности. Причиной дрейфа нулевой линии может быть нестабильность расхода газа-носителя, отсутствие герметичности системы, влияние температуры и др. [c.156]

    Н4 с пороговой чувствительностью 0,005—0,01%- Одна ко при этом отмечались нестабильность нулевой линии, низкая воспроизводимость результатов при параллельных определениях и высокая чувствительность детектора к изменению скорости потока газа-носителя [Л. 88]. [c.186]

    Низкокипящие растворители часто образуют пузырьки в насосах и детекторах. При использовании наиболее распространенных в настоящее время плунжерных насосов вероятность образования пузырьков тем больше, чем выше давление паров растворителя и скорость плунжера в фазе всасывания. Наличие пузырьков в насосе резко снижает точность подачи растворителя, а пузырьки в детекторе вызывают сильный шум и нестабильность нулевой линии. Для предотвращения этого явления проще всего применять растворители, температура кипения которых по крайней мере на 20—50 °С [c.128]

    Хроматографическая система должна быть полностью герметичной. Нестабильность нулевой линии часто является результатом течей, причем воздух попадает в систему газа-носителя, даже находящуюся под давлением. Для предотвращения конденсации пробы необходимо поддерживать температуру детектора выше температуры колонки. Все блоки детектора (регистратор, [c.154]


    Из-за естественной нестабильности параметров хроматографического режима и воздействия на сигнал детектора различных помех, фоновый сигнал детектора проявляет различной степени нестабильность, что отражается на качестве нулевой линии. [c.66]

    Характеристика детектора. Основная характеристика детектора определяется зависимостью отклонения пера регистратора х от концентрации определяемой примеси с. Таким образом, имеется в виду характеристика детектора совместно с регистратором, при этом оговаривается, что нестабильность нулевой линии системы имеет порядок точности регистратора и, следовательно, составляет 0,5—1 % от его шкалы. [c.48]

    Ток, возникающий в детекторе, проходит через высокоомное сопротивление, и падение потенциала на нем компенсируется соответствующей потенциометрической схемой. Напряжение, отвечающее разности между фоновым током и током, обусловленным элюированным пиком, подводится к потенциометрическому самописцу. Как уже отмечалось, величина ионного тока пропорциональна интенсивности излучения радиоактивного источника. Соответствующий распад самопроизволен, носит случайный характер, и поэтому будут наблюдаться флуктуации. Эти флуктуации источника вызывают соответствующие изменения ионного тока относительно некоторой средней величины. В чувствительных приборах флуктуации могут проявляться в нестабильности нулевой линии, когда измерение производится по дифференциальной схеме. [c.94]

    Стабильность. Уход нулевой линии с предварительно установленного уровня обычно называют дрейфом нулевой линии. Подобно сигналам детектора, записанным в координатах показания — время, дрейф также может быть положительны, и отрицательным (рнс. 44, а). Дрейф пулевой линии при работе в изотер-мическом режи.ме может быть вызван нестабильностью [c.90]

    ОТ нулевой линии на основе показаний детектора, снимаемых с электронного потенциометра (рис, 132, б). При этом не требуется точно поддерживать рабочие условия, одиако возможны ложные срабатывания из-за нестабильности нулевой линии. Задающее устройство, установленное на электронном потенциометре, сигнализирует о начале и конце прохождения пика по этим сигналам с помощью коммутатора переключаются клапаны. Обычно все фракции отбираются на одном уровне от нулевой линии, определяемом степенью разделения пиков, В качестве задающих устройств, устанавливаемых на самопишущем приборе, используются механические контакты или фотосопротивления. Очевидно, что эта достаточно простая система не обладает необходимой гибкостью. Например, пики 3 и 4 отбираются вместе, а пик 5 не отбирается вообще, В системе можно осуществлять нормализацию показаний детектора, используя устройство усиления или ослабления сигналов детектирующей системы ио заранее заданной программе. Однако в этом случае схема усложняется. [c.281]

    Меры снижения нестабильности нулевой линии, которые не уменьшают изменений давления, являются удовлетворительными в случае помех первого типа (изменение давления), но аналитические условия могут оказаться неоптимальными. [c.88]

    В последнее время ставился вопрос о необходимости радиоактивного источника для обеспечения и поддержания этих условий . В предварительных опытах авторов, когда использовалась камера из нержавеющей стали без источника нзл у-ч-ения, детектор вообще не работал. Введение в этот детектор уранового стеклянного цилиндра приблизительно тех же размеров, что и применявшийся позднее источник излучения, восстанавливало в определенных пределах детектирующую способность прибора. Тем не менее характеристики детектирования отличались от тех, которые имели место при наличии источника излучения, и для работы требовалось более высокое напряжение. Кроме toi o, дрейф нулевой линии и колебания абсолютной чувствительности являлись признаком значительной нестабильности детектора, отсутствующей лишь при напряжении 800—975 в. [c.149]

    На чувствительность катарометра оказывают влияние сила тока, газ-носитель и температура. При уве.личении силы тока в два раза, чувствительность возрастает в 4—8 раз. Однако следует учитывать, что слишком сильное увеличение тока может привести к перегоранию нити и нестабильности нулевой линии. Газ-носитель необходимо выбирать с максимально возлюжной теплопроводностью. Для органических соединеннй наиболее высокая чувствительность детектирования достигается при применении в качестве газа-носителя водорода или гелия. Повышение температуры нити приводит к увеличению чувствительности детектора. Она должна быть достаточно высокой, чтобы избежать конденсации пробы внутри детектора. Несмотря на это следует все же стараться поддерживать, если это возможно, более низкую температуру детектора. [c.41]

    Нестабильная нулевая линия. [c.104]

    Нестабильность нулевой линии. [c.105]

    Измерение полного ионного тока может быть выполнено различными способами. Самый простой состоит в использовании коллектора полного ионного тока. Последний представляет собой диафрагму, располагаемую между ионным источником и масс-анализатором, которая виньетирует периферийную область пока еще не диспергированного пучка ионов. Эта диафрагмированная часть ионного пучка служит мерой полного ионного тока. Измеряемый сигнал после усиления его электрометрическим усилителем регистрируется компенсационным самописцем в виде хроматограммы. Если ионный источник, как обычно, работает в режиме энергии электронов 70 эВ, то при этом ионизируется также и газ-носитель, что вносит существенный вклад в полный ионный ток. Для того чтобы произвести правильную запись хроматограммы, эту часть полного ионного тока нужно электрически скомпенсировать. В этих условиях даже незначительные, практически почти неустранимые изменения потока газа-носителя или компенсирующего напряжения вызывают сильную нестабильность нулевой линии хроматограммы и, следовательно, потерю чувствительности детектирования сигнала. От этого недостатка можно в существенной мере избавиться, понизив энергию электронов ионного источника до 20 эВ и выбрав гелий в качестве газа-носителя. Масс-спектры органических соединений, измеренные при помощи электронов с энергией 20 эВ, практически не отличаются от спектров, возбуждаемых при 70 эВ гелий как газ-носитель ввиду своей высокой энергии ионизации (24,5 эВ) при этом не иони- [c.302]


    Для интерпретации и оценки хроматограммы выбирают метод, соответствующий возможностям используемой техники и качеству хроматографической записи. Обычно считается, что наиболее правильные данные о количественном содержании компонентов смеси можно получить из площади пика, поскольку в случае нелинейной изотермы адсорбции зависимость высоты пика от количества вещества нелинейна. Но, с другой стороны, если нет хорошего интегратора, при измерении площади пика можно допустить значительные ошибки, в особенности если пик слишком узкий или нулевая линия нестабильна. В таких случаях интерпретация хроматограмм по высоте пиков дает более точные результаты. [c.253]

    Если в пропитанном неподвижной фазой материале находятся еще остатки растворителя, если неподвижная фаза содержит летучие примеси пли низкомолекулярные фракции, которые обладают высоким давлением пара (что часто бывает при примепении полимерных фаз), то все это улетучивается с течением времени, причем непрерывно изменяются разделительная способность, эффективность колонки, время удерживания и пагружае-мость колонки. Кроме того, указанные примеси загрязняют детектор и вызывают нестабильность нулевой линии. Этот процесс, называемый первичным старением, должен быть закончен раньше, чем колонку устанавливают в прибор. [c.107]

    При переходе к новой системе растворителей следует помнить, что она должна смешиваться с предыдущей системой, не вызывая при этом разделения на две несме-шивающиеся фазы. Если это может произойти (например, при переходе от системы метанол — вода к системе гексан — изопропанол или от системы фосфатный буферный раствор к системе метанол — вода или ацетонитрил—вода), надо промыть колонку промежуточным растворителем, полностью смешивающимся с обеими системами растворителей. В противном случае выделившаяся гетерофаза (в приведенных примерах— это вода и соль) вызовет множество проблем нестабильность характеристик удерживания дрейф и нестабильность нулевой линии детектора повышение давления на входе в колонку искажение формы пиков забивку капилляров и инжектора залипание клапанов и т.д. Выбирая промежуточный растворитель, следует принимать во внимание его вязкость, поглощение в УФ-области и другие характеристики. Иногда приходится вести промывку даже двумя промежуточными растворителями, чтобы избежать разделения старой и новой систем растворителей на гетерогенные фазы. [c.118]

    В-четвертых, это химическое загрязнение колонки. Его избежать полностью не удается, так как даже высокочистые растворители для ВЭЖХ, не говоря о технических видах, содержат некоторое количество примесей, продуктов фотохимической я окислительной деструкции растворителей, их стабилизаторов, примесей, тары и др. Пробы также содержат примеси, состав которых часто установлен не полностью. Эти примеси, если они не элюируются в условиях анализа, постепенно накапливаются на сорбенте в начале колонки и, играя роль нанесенной активной фазы, начинают избирательно удерживать некоторые компоненты пробы вплоть до их необратимой сорбции. Если эти примеси элюируются с большим временем удерживания, они приводят к нестабильности положения нулевой линии в виде дрейфа в ту или другую сторону, широких горбов в самые неожиданные моменты и т.д. К такому же химическому загрязнению, изменяющему параметры удерживания, приводит использование силикагеля, а в качестве подвижной фазы — влажного гексана или гептана, постепенно загрязняющих безводный силикагель водой. [c.124]

    Выделяющиеся из недегазированной подвижной фазы пузырьки воздуха приводят к нестабильности нулевой линии детектора, ухудшают эффективность колонок для эксклюзионной хроматографии, заполненных полужесткими гелями, могут вызвать окисление лабильных соединений и некоторых привитых фаз. [c.189]

    Довольно высокие требования предъявляются к герметичности пневматической схемы газового хроматографа. Негерметичность газовых трактов оказывает влияние на стабильность нулевой линии (шумы и дрейф), на погрешность и воспроизводимость хроматографического анализа. Негерметичность линии газа-носи-теля после испарителя может привести к потерям пробы, а негерметичность линий вспомогательных газов к нестабильной работе детекторов. Кроме того, при негерметич ности линий газа-носителя может происходить диффузия в колонку и детектор атмосферного кислорода, который способствует разложению пробы и неподвижной фазы, увеличивает фоновый ток и уменьшает чувствительность некоторых типов детекторов, разрушает чувствительные элементы детекторов по теплопроводности. [c.127]

    В качестве детектора в препаративном хроматографе чаще всего используют катарометр, хотя в последнее вре гя начинают применять и ионизационные детекторы. Особенностью работы детекторов при препаративной хроматографии является высокая скорость газа-носителя, в качестве которого обычно используется азот. Высокая скорость в сочетании с низкой теплопроводностью газа вызывает нестабильность нулевой линии детектора теплопроводности, а также частичную или полную инверсию пика. Частичная инверсия состоит в том, что при возрастании тока накала нити, температуры корпуса детектора или скорости газа края пика и его середина начинают отклоняться в разные стороны от нулевой линии ( У-образный пик) в дальнейшем происходит полная инверсия пика, наступление которой зависит также от величины пробы. Наиболее полное объяснение инверсии состоит в следующем. Скорость потери тепла нитью детектора определяется как теплопроводностью, так и принудительной конвекцией. В газах-носителях с высокой теплопроводностью, например в гелии, который обычно используется в аналитической хроматографии, сигнал детектора определяется только теплопроводностью н не зависит от потока газа, и детектор работает как чисто копцентрацгюнный. При использовании в качестве газа-носнтеля азота вклад принудительной конвекции становится значительным и сигнал детектора существенно зависит от потока газа. [c.272]

    Чувствительность детектора к изменениям потока приводит к нестабильности нулевой линии из-за флуктуаций скорости, причем эта нестабильность наступает прн числе Рейнольдса Re = 150 -i--f- 200, т. е. значительно раньше турбулизацин потока в канале детектора. [c.273]

    Гораздо более серьезной проблемой, чем разделение, является количественное определение альдегидов. Дело в том, что альдегиды вообще нестабильны они окисляются кислородом воздуха до соответствующих кислот и сами, особенно в очень чистом состоянии, подвергаются альдольной конденсации, причем всегда образуются вещества с более высокой температурой кипения, чем псходные. Поэтому в смеси, содержащей альдегиды, всегда присутствуют (кислоты, альдоли), которые выходят из колонки с большим запаздыванием. Например, масляные альдегиды вымываются из колонки, при использовании в качестве жидкой фазы диэтнлеигликоль-дибензоата, при 100 °С через 18 мин, изомасляная к -слота через 3 ч, а альдоли Се через 2 ч. Поскольку выход этих веществ нз колонки сильно задерживается, их пики получаются нечеткими и искаженными, хотя нулевая линия изменяется лишь незначительно. Поэтому для разделения альдегидов почти всегда применяют систему из двух колонок (см. рис. 20, стр. 70). В первой, более короткой, колонке происходит отделение альдегидов от остальной смеси. Анализ можно вести так, чтобы после выхода из первой колонки альдегидов ток газа-носителя подавался лишь на вторую колонку, где происходит разделение альдегидов, а затем можно продолжить разделе- [c.141]

    Отличительной чертой описываемого прибора является. установка абсорбера 12 с аскаритом между сравнительной и измерительной камерами ячейки 11. Это позволяет потоку гелия, не содержащего СОг, свободно проходить в сравнительную камеру ячейки, а также обеспечивает непрерывный контроль производительности трубки для сожжения. Неполное сожжение, в результате которого в потоке выходящего газа остаются окись углерода или углеводород, регистрируется в виде отрицательного пика на хроматограмме. Если за положительным пиком на хроматогра.мме следует отрицательный, то это указывает на необходимость регенерации окиси меди или на слишком большой размер пробы. Нестабильность нулевой линии говорит о том, что надо заменить абсорберы с дегидритом, или с аскаритом, или даже оба. Эти абсорберы и [c.201]

    Пламенные детекторы были в дальнейшем усовершенствованы. Вирт [107] уменьшил нестабильность нулевой линии, используя в качестве газа-носителя азот с независимой подачей водорода перед самым соплом. Скорости подачи азота и водорода были равны соответственно 20—60 и 100—120 мл1мин. Гендерсон и Нокс [34] применяли в качестве газов-носителей азот и углекислоту и показали, что существует удовлетворительная линейная зависимость между площадью ника, рассчитанной на моль, и молярной теплотой сгорания для 24 органических соединений. Они пришли к заключению, что микропламенный детектор обладает примерно такой же чувствительностью, как детектор но теплопроводности. Прима-веси и другие [87] провели исследование характеристик пламени, реакции детектора и уровня шумов термопары в зависимости от ее положения над эжектором. Причинами возникновения шумов в детекторе являются колебания скорости потоков воздуха и азота, колебания атмосферного давления и частицы пыли. [c.253]

    Как н любой физический сигнал, хроматографический сигнал, получаемый от детектора, несет в себе помехи, имеющие различные частоты (шумы), которые ограничивают его информативность и от которых нужно избавиться в максимально возможной степени. Если частоты полезного сигнала и помех различаются между собой, то для их разделения можно использовать аналоговые частотные фильтры. Поскольку хроматографические пики при минимальной полуширине (ширина пика на половине его высоты, обозначаемая как HWB или Ьн) 1 с имеют максимальную ширину в шкале частот 10—20 Гц, они попадают в высокочастотную область шумов, которые могут быть вызваны самим детектором, усилителем, сетевым фоном переменного тока, наводками и контактными импульсами переключающих устройств. Из-за фазового сдвига аналоговых фильтров на границе полосы пропускания предельную частоту фильтфа следует выбирать выше самой высокой частоты полезного сигнала во избежание искажения его временной характеристики. В соответствии с этим фильтры нижних частот имеют предельную частоту 25—40 Гц. Недостатком чаще всего используемых пассивных аналоговых фильтров являются жесткие характеристики, которые препятствуют оптимальной фильтрации полезных сигналов с примерно на два порядка более низкими предельными частотами, каковые имеют место для различных ширин пиков в хроматографии. По этой причине дополнительно к аналоговым фильтрам применяют цифровые фильтры, согласованные с проходящим сигналом (разд. 2.4.3). Центральное заземление и хорошая экранировка (особенно детектора, усилителя и проводников аналоговых сигналов) позволяют частично избавиться от высокочастотных помех. Низкочастотные составляющие помех, источниками которых являются газ-но-ситель и содержащиеся в нем примеси, летучие компоненты неподвижной фазы, нестабильность рабочего режима (например, температурные колебания и перепады давления) приводят к неустойчивой или медленно дрейфующей нулевой линии. По- [c.439]


Смотреть страницы где упоминается термин Нулевая линия нестабильность: [c.199]    [c.206]    [c.436]    [c.276]    [c.281]    [c.116]    [c.208]    [c.436]    [c.206]    [c.269]   
Руководство по газовой хроматографии (1969) -- [ c.107 , c.126 , c.134 , c.136 ]

Руководство по газовой хроматографии (1969) -- [ c.107 , c.126 , c.134 , c.136 ]

Руководство по газовой хроматографии (1969) -- [ c.107 , c.120 , c.134 , c.136 ]




ПОИСК







© 2025 chem21.info Реклама на сайте