Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический разряд в газах

    Из схемы, приведенной на рис. 2, следует, что истинная электрохимическая система представляет собой цепь из последовательно включенных проводников первого и второго рода. С этой точки зрения электрический разряд в газах не может быть назван чисто электрохимическим процессом, так как газы в таких условиях обладают смешанной электронно-ионной проводимостью, и многие фундаментальные законы электрохимии к ним неприменимы. [c.14]


    Исторически первой формой электрического разряда в газе, примененной для проведения химических реакций, был искровой разряд [2-4]. В искровом разряде протекают самые разнообразные реакции синтеза (КНз, N0, H N и О3), превращения и разложения углеводородов и многие другие [5]. Не случайно поэтому зарождение жизни на Земле по одной из гипотез связывают с искровым разрядом в атмосфере - молнией. Высокая температура в канале приводит к разложению молекул газа на атомы и радикалы, которью, попадая в окружающую среду с более низкой температурой, инициируют различные реакции. [c.173]

    Все это не означает, конечно, что процессы, сопровождающиеся возрастанием С, не могут происходить при постоянных температуре и давлении. Но такие процессы происходят лишь по мере получения работы извне, например путем электролиза или с помощью электрического разряда в газах (что требует затраты в обоих случаях электрической энергии) или действием света в фотохимических реакциях. В частности, так происходит фотосинтез в растениях. [c.223]

    Для разделения жидких и газовых суспензий можно использовать силы электрического поля. При действии на эмульсию поля переменного тока высокого напряжения происходит слияние (коагуляция) мелких капелек диспергированной жидкости в более крупные, которые затем легко осаждаются под действием силы тяжести. Создавая электрический разряд в газе, добиваются заряжения взвешенных в нем частиц, которые затем осаждаются электрическими силами в поле постоянного тока высокого напряжения. [c.421]

    Термическая плазма играет существенную роль в космических процессах и, в частности, в термоядерных реакциях на Солнце, которые являются источником выделяемой им энергии. В лабораторных условиях и в технике термическую плазму получают нагреванием газа и при определенных видах электрического разряда в газе. [c.247]

    Под плазмой понимают частично иди полностью ионизованный газ, в котором плотность положительных и отрицательных зарядов практически одинакова. Различают низкотемпературную (с 7 10 К) и высокотемпературную (с Г—10 —10 К и более) плазму. Плазма образуется в электрическом разряде в газах (дуговом, искровом, тлеющем и др.), в процессах горения и взрыва. [c.199]

    Анализ результатов изучения радиоактивности, электрического разряда в газах, электролиза и некоторых других явлений позволил высказать предположение, что атомы состоят из каких-то более простых частиц, В дальнейшем удалось доказать, что составной частью атомов всех элементов является электрон (е ). Эта частица обладает массой в 1837 раз меньшей массы атома водорода и имеет отрицательный заряд е  [c.15]


    Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы. [c.7]

    В спектрах испускания, в которых часто наблюдаются переходы с возбужденных колебательных уровней верхнего электронного состояния (эти уровни эффективно заселяются в электрическом разряде в газах), наблюдаются ве полосы с максимальными интенсивностями. Так, например, на рис. 109, г молекула находится-на возбужденном уровне v —. Переход возможен из обеих точек поворота ядра на уровни и" = 0 и v" = 3 соответственно. [c.207]

    Устройство для электрического разряда в газах состоит из длинной стеклянной трубки, в концы которой впаяны две металлические пластинки или электроды, подсоединенные к источнику высокого напряжения (10 В). Боковая отводная трубка, соединенная с вакуумным насосом, позволяет регулировать давление газа внутри трубки (рис. 1). [c.8]

    Однако известно, что спектры испускания атомов — например, под действием электрического разряда в газе — в основном состоят из некоторого числа полос, соответствующих определенным частотам это дискретные спектры. [c.21]

    В 1895 г. английский ученый Крукс проводил эксперименты по электрическому разряду в газах при низких давлениях. Используя стеклянную трубку, которую называют трубкой Крукса (рис. 1.1), он наблюдал свечение стекла при очень низких (Ю " атм) давлениях газа. Если стекло (экран 6) на конце трубки, противоположном катоду / (отрицательно заряженному электроду), было покрыто фосфоресцирующим материалом, то этот конец трубки сильно светился. Крукс обнаружил, что когда он помещал внутри трубки препятствие 4 (в форме креста), то в области свечения появлялась его тень 5. Это позволило Круксу сделать вывод. [c.11]

    Электрическая дуга является одним из видов электрического разряда в газе или в парах. Она характеризуется малым катодным падением напряжения (10— 20 В) и высокой плотностью тока, которая может достигать сотен и тысяч ампер на 1 см . Неионизированные газы и пары, состоящие из нейтральных частиц, не проводят электрический ток. В дуговом разряде газ сильно ионизирован, в нем присутствуют положительно заряженные ионы и отрицательно заряженные свободные электроны. При наложении электрического поля на дуговой промежуток заряженные частицы под его действием [c.180]

    Электрическая дуга, или дуговой разряд, — один из видов электрических разрядов в газе или парах. Газовая среда, обычно не проводящая тока, приобретает проводимость, если в ней, помимо нейтральных, появляются свободные заряженные частицы — электроны, положительные и отрицательные ионы, которые и обусловливают прохождение в газе токов, если в нем существует электрическое поле. [c.18]

    Поместим в стеклянную трубку с электродами на концах немного газообразного водорода, так чтобы давление внутри трубки было значительно ниже атмосферного, а затем будем пропускать через трубку электрический ток под высоким напряжением. Наш прибор отличается от рекламных неоновых трубок, которые можно увидеть на оживленных городских улицах, только тем, что внутри него находится водород. Неоновые трубки светятся оранжево-красным светом, а водород дает бледно-голубое свечение. При пропускании света от трубки через призму (см. рис. 2.7) наблюдается спектр, состоящий из отдельных линий этот спектр показан на рис. 5.1. На самом деле спектр образуется атомами Н, возникающими из молекул Н2 при электрическом разряде в газе. Оранжево-красное свечение неоновых трубок также дает спектр, состоящий из отдельных спектральных линий. Такие спектры существенно отличаются от непрерывного многоцветного спектра, присущего излучению абсолютно черного тела, с которым мы познакомились в гл. 2. [c.67]

    В чем сущность опытов по изучению электрических разрядов в газах  [c.93]

    Электрический разряд в газах..................................................................................................................529 [c.6]

    Газоразрядные лампы используют световой эффект, появляющийся при возникновении электрического разряда в газах или парах. В газоразрядных лампах разной конструкции и мощности используют различное давление газа или пара в колбе и виды разряда дуговой, тлеющий или импульсный. Эти лампы имеют высокую световую отдачу и большой срок службы. В настоящее время они [c.224]

    На промышленных предприятиях очень ширено используют метод разрушения аэрозолей путем осаждения в центробежном поле (рис. 69). Под действием центробежных сил и диффузии частицы осаждаются на стенках цилиндра, а очистившийся газ уходит вверх. Другой эффективный промышленный метод — разрушение аэрозолей в сильном электрическом поле (электрофильтры). На рис. 70 схематически изображен электрофильтр. Между электродом 1 и стенкой 2 фильтра создается высокое напряжение в несколько тысяч вольт. Электрический разряд в газе дает большое количество ионов, которые адсорбируются на частицах аэрозоля. Электрически заряженные таким способом частицы движутся под действием сильного электрического поля к электродам, где коагулируют и оседают на дно электрофильтра. [c.151]


    В связи с переходом на точную фотоэлектрическую регистрацию спектра возникли специфические требования к источнику возбуждения спектра. Целесообразно использовать источники спектра, излучающие за время экспозиции максимальный полезный сигнал и минимальные электромагнитные помехи. Такие повышенные требования к точности фотоэлектрических методов анализа заставляют разрабатывать источники со значительно большим числом регулируемых и контролируемых параметров, чем это принято обычно, и жестко стабилизовать оптимальные значения этих параметров. В частности, стабилизируются следующие параметры электрического разряда в газах 1) форма и величина тока и напряжения в импульсе, а также фаза поджига активизированной дуги переменного тока 2) параметры зарядного и разрядного контура искрового разряда 3) напряжение на конденсаторе разрядного контура искрового импульсного разряда 4) геометрия межэлектродного промежутка и микрорельеф рабочего участка поверхно- [c.26]

    Положительные ионы (отрыв электронов из оболочек) образуются в результате бомбардировки электронами, освещения или с помощью электрического разряда в газе (Ю"2—10- мм рт. ст.). [c.396]

    Ядерная модель атома. Начальные сведения о составе и строении атомов, которыми располагала наука, были получены в результате изучения явлений радиоактивности, электрического разряда в газах, электролиза и некоторых других явлений. Было найдено, что в состав атомов всех элементов входят электроны. Так как в нормальном состоянии атомы нейтральны, то, следовательно, в них должны содержаться и какие-то положительно заряженные частицы. [c.27]

    Инфракрасные лучи можно получить и при электрическом разряде в газах. [c.38]

    Механизм электрического разряда в газе........... [c.4]

    МЕХАНИЗМ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА В ГАЗЕ [c.118]

    Согласно классической теории Таунсенда, общую картину возникновения электрического разряда в газе можно представить следующим образом вследствие естественной радиоактивности и космического излучения в воздухе непрерывно образуются свободные заряды. Так как одновременно с ионизацией происходит процесс взаимной нейтрализации положительных и отрицательных ионов (рекомбинация заряженных частиц), то в результате устанавливается динамическое равновесие (постоянная концентрация ионов обоих знаков, приблизительно равная 1000 пар ионов в 1 см ). [c.119]

    Иерусалимов М. Е. Электрические разряды в газах. Киев, Киевский политехнический ин-т, 1964. 85 с. [c.232]

    Исследование быстропротекающих процессов (электрических разрядов в газах, излучения плазмы при высоких температурах, ударных волн, люминесценции и т. п.) может быть с успехом выполнено средствами скоростной спектроскопии. Скоростные спектрографы позволяют одновременно регистрировать излучение в широкой области спектра. Они дают значительно больше информации об изменении спектрального состава излучения во времени, чем многоканальные спектрометры. [c.181]

    Электрический разряд в газе, как и всякое сложное явление, может быть исследован и описан с двух точек зрения. Во-первых, могут быть выяснены общие макроскопические зависимости, определяющие свойства разряда в целом. Во-вторых, можно попытаться объяснить эти общие закономерности с помощью детального механизма проходящих в разряде элементарных процессов. Первый, феноменологический, путь является естественным, начальным этапом любой теории. Второй путь должен обосновать, опровергнуть или, наконец, дополнить и расширить выводы, полученные первым путем. Нет необходимости объяснять, например, с помощью аналогий с термодинамикой или формальной химической кинетикой, что общие феноменологические закономерности могут отклоняться от реально существующих. От феноменологической теории можно требовать только того, чтобы она не содержала внутренних противоречий, т. е., чтобы основанные на опыте предпосылки теории не входили в противоречие с выводами из нее в целом. Это нисколько не обесценивает значения такой теории в они-сании конкретных явлений, а напротив, является преимуществом перед любой детальной теорией, как правило, основанной на принятии той или иной модели и, следовательно, ограниченной в своей истинности адекватностью этой модели с реальным процессом. В электротехнике общие феноменологические свойства электрических приборов принято изображать в виде эквивалентных схем, которые позволяют производить расчет приборов, так как эти схемы состоят из простых элементов и отображают прибор только как источники или потребители электрической энергии, но не являются его моделью [30]. Как отмечалось выше, химическое дейст- [c.80]

    То же относится и к химическим процессам. Взаимодействие водорода и кислорода с образованием воды может происходить самопроизвольно, и осуществление этой реакции дает возможность получать соответствующее количессво работы. Но, затрачивая работу, можно осуществить и обратную реакцию — разложения воды на водород и кислород, — например, путем электролиза. И другие химические реакции, которые по своим термодинамическим параметрам не могут в данных условиях совершаться самопроизвольно, можно проводить, затрачивая работу извне. Большей частью это осуществляют или путем электролиза, или при электрическом разряде в газах, или действием света, или же путем повышения давления (причем одновременно изменяются и условия проведения реакции). Из хорошо известных процессов такого рода можно назвать фотосинтез в растениях, получение натрия и хлора путем электролиза расплавленного хлористого натрия, получение металлического алюминия из бокситов путем электролиза, синтез аммиака при высоком давлении и др. [c.209]

    Возникновение и развитие масс-спектрометрического метода. Основой для создания и развития масс-спектрометрического метода анализа послужили работы по исследованию электрического разряда в газах при низком давлении. Принципы анализа положительных пучков, состоящих из ионов, возникающих при бомбардировке молекул вещества электронами, были изложены в 1910 г. Дж. Дж. Томсоном [1]. В его методе парабол положительные ионы, двигаясь в узкой трубке, подвергались действию параллельно расположенных электрического и магнитного полей и, попадая на фотопластинку, образовывали на ней серии параболических кривых. На каждую кривую укладывались частицы, характеризующиеся одинаковым отнощением массы к заряду (т/е), но различной скоростью. При исследовании многоатомных молекул получалось несколько парабол, что указывало на диссоциацию молекул с образованием различных положительно заряженных осколков. Так, молекула O U дает параболы, соответствующие ионам С+, 0+, С1+, С0+, U СС1+ и O I2+. При анализе углеводородов также наблюдались осколки молекул. [c.5]

    Небольшое нагревание после предварительного возбуждения светом Электрический разряд в газах Нагревание в пламени Л1еханичазкое раздробление кристаллов, например, сахара, сульфата палия и др. [c.56]

    Искровой разряд - прерывистая форма электрического разряда в газах, возникающая обычно при нормальном атмосферном давлении (порядка 10 Па). В естественных природных условиях искровой разряд легко наблюдать в виде молнии. По внешнему виду искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильноразветв-ленных полосок - так называемых искровых каналов. Эти каналы развиваются как от положительного, так и от отрицательного электродов либо начинаются в пространстве между ними. При этом каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательного -диффузные края и более мелкое ветвление. [c.505]

    Как химик научные работы проводил в основном в области электрохимии. Изучал механизм электропроводности в растворах электролитов (с 1853), законы движения ионов в растворах (с 1890-х). Установил, что при электролизе растворов скорости движения положительных и отрицательных ионов неодинаковы. Назвал доли общего количества электричества, переносимые каждым видом ионов, числами переноса, разработал методику их определения и выяснил числа переноса для многих электролитов. Изучал аллотропию селена (1851) и фосфора (1853). Исследовал также спектры раскаленных газов (1864) и процессы прохождения электричества через сильно разреженные газы (1869—1883). Для исследования электрических разрядов в газах использовал созданные им специальные трубки (трубки Гиттор-фа). Наблюдал (1869) катодные лучи и описал их свойства. [c.142]


Библиография для Электрический разряд в газах: [c.258]    [c.258]    [c.231]    [c.655]   
Смотреть страницы где упоминается термин Электрический разряд в газах: [c.151]    [c.26]    [c.151]    [c.46]    [c.39]    [c.248]    [c.287]    [c.316]    [c.294]   
Смотреть главы в:

Техника лабораторного эксперимента в химии -> Электрический разряд в газах


Химия свободных радикалов (1948) -- [ c.9 , c.92 , c.97 , c.98 , c.106 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Газы электрические разряды чер



© 2025 chem21.info Реклама на сайте