Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ масс-спектрометрические методы

    В первой части тома представлены информационные базы и общие вопросы аналитической химии, метрологические основы методов количественного анализа, методы разделения и концентрирования, хроматографические методы и капиллярный электрофорез, гравиметрические, титриметрические и электрохимические методы анализа, масс-спектрометрический метод и газовый анализ. [c.2]


    Для исследования высокополимерных соединений и процессов их получения существуют различные модификации масс-спектрометрического метода. Одна из них относится к изучению продуктов термического распада полимеров [19], поскольку предполагают, что продукты термической деструкции в глубоком вакууме не претерпевают превращений и сохраняют структуру, отвечающую исходной молекуле. Исходя из этой предпосылки и используя данные масс-спектро-метрического анализа, было доказано, в частности, наличие разветвленных и пересекающихся цепей в молекуле полиэтилена, а также установлены зависимости между строением молекулы полиэтилена и физико-механическими свойствами полимера. [c.11]

    В настоящее время наибол е распространенным монитором выгорания является неодим-148. Его можно определять методом активационного анализа масс-спектрометрическим методом изотопного разбавления. Для каждого метода требования к очистке неодима от других компонентов облученных образцов в некоторой степени различны. [c.349]

    Разработанные ранее масс-спектрометрические методы анализа нефтяных фракций дают сведения о их групповом составе и позволяют установить наиболее типичные молекулярные структуры внутри любой группы соединений, рассматриваемой как один тип. Эта задача решается снятием и анализом полученных масс-спектров, сопоставлением качественных и количественных данных масс-спектров индивидуальных соединений и узких фракций со спектрами выделенных из нефтяного продукта концентратов, содержащих в основном определенный тип соединений. Снятие и обработка масс-спектров усложняются по мере утяжеления нефтяного сырья, каким являются изучаемые в данной работе экстракты остаточной нефти. В связи со сложностью состава и широким диапазоном изменения молекулярной массы, с преобладанием высокомолекулярной части масс-спектральный анализ не позволяет так определить количественное содержание групп по определенным структурным признакам, чтобы разница масс-спектров соедине- [c.59]

    Использование в качестве рабочих веществ пентакарбонила железа Ре(С0)5, тетраметила олова 5п(СНз)4 и диоксида углерода СО2 накладывает ограничения на максимальное теоретически возможное обогащение по целевому изотопу. Связано это с тем, что в одной молекуле СО2 присутствуют изотопы двух, а в одной молекуле 5п(СНз)4 и Ре(С0)5 — трёх элементов. Сочетание изотопии целевого элемента с изотопией других элементов, представленных в молекуле рабочего вещества (кислорода — для СО2, углерода и водорода — для Зп(СНз)4, кислорода и углерода — для Ре(С0)5) приводит к изотопным перекрытиям — смешению разных типов молекул в одной массовой компоненте рабочего газа. Так как эффективность центробежного метода разделения зависит от разности молекулярных масс, то наличие молекул, состоящих из различных изотопов элементов и имеющих одинаковую молекулярную массу, приводит к ограничению максимальной степени обогащения и снижению теоретически достижимой степени обогащения. Наличие изотопных перекрытий создаёт трудности для достоверного изотопного анализа масс-спектрометрическим методом. При использовании в качестве рабочего газа криптона подобных препятствий не существует. [c.531]


    Органические соединения, обладающие жидкокристаллическими свойствами, при температурах 120—200 °С и.меют давление пара, достаточное для анализа масс-спектрометрическим методом. Анализ может быть проведен с использованием как системы прямого ввода образца в район ионизации, так и баллона напуска. Последний не применим при анализе лишь азоксисоединений из-за их термической неустойчивости, на что указывалось ранее. Тем не менее система прямого ввода образца оказывается предпочтительнее, так как жидкокристаллические материалы сильно адсорбируются, что при работе с баллоном напуска приводит к образованию трудноудаляемого фона. [c.111]

    В предлагаемом издании значительно расширено описание люминесцентного и спектрального методов анализа, спектрометрии в инфракрасной области, добавлен метод кулонометрического анализа. Введены и некоторые физико-химические методы, не описанные в предыдущих изданиях (радиоактивационный анализ, масс-спектрометрический метод и др.). [c.6]

    ГОСТ 9471—60. Масс-спектрометрический метод анализа газа на приборе МХ 1302 или МХ 1303. [c.236]

    Молекулярный масс-спектрометрический метод обеспечивает быстрый и точный анализ сложных смесей органических соединений, я В основе масс-спектрометрического метода лежит свойство положительных ионов отклоняться однородным магнитным полем по-разному, в зависимости от их массы, заряда и скорости. [c.259]

    Масс-спектрометрический метод уже сейчас очень широко применяется для установления строения органических соединений. Он быстро развивается, охватывая почти все классы органических веществ. Особенно велико его значение при установлении строения сложных природных веществ здесь он дает возможность решать сложные задачи с использованием очень малого количества вещества (долей миллиграмма). Метод находит также применение для количественного анализа смесей (особенно углеводородных). [c.591]

    При исследовании масс-спектрометрическим методом продуктов превращений вакуумного дистиллята показано,- что би- и полициклические углеводороды подвергаются при гидрокрекинге глубокому распаду с образованием моноциклических систем Из анализа изменения группового состава сырья в ходе гидрокрекинга видно, что количество моноциклических насыщенных углеводородов и парафинов уменьшается, а количество полициклических насыщенных углеводородов и полициклических ароматических углеводородов проходит через максимум . Эти данные коррелируют с представлениями о последовательности процессов гидрирования колец (см. стр. 314). [c.317]

    В работе [218] хромато-масс-спектрометрический метод применен для анализа азотсодержащих соединений нефти с использованием химической ионизации с аммиаком. [c.138]

    Успешно применяются масс-спектрометрические методы анализа в новой отрасли промышленности, созданной на базе нефтяного сырья — нефтехимического синтеза. С помощью масс-спектрометрического анализа получается чрезвычайно важная информация по составу продуктов полимеризации пропилена. Данные по распределению этиленовых углеводородов по молекулярным весам характеризуют содержание целевого продукта, а данные по групповому составу — наличие других типов углеводородов [18]. [c.9]

    Масс-спектрометрические методы анализа [c.30]

    Для больших пептидов Овчинников и Кирюшкин [132] рекомендовали применение комбинированного хромато-масс-спектрометрического метода идентификации дипептидов и обработку результатов анализа иа ЭВМ при использовании картотеки масс-спектров, содержащей данные для 400 возможных дипептидов. [c.373]

    Несмотря на то, что к настоящему времени создано большое число масс-спектрометрических методов, позволяющих исследовать органические соединения с широким диапазоном физикохимических свойств и получать достаточный объем информации об их структуре, до сих пор используют подходы, связанные с химической модификацией органических веществ перед масс-спектрометрическим и хромато-масс-спектрометрическим анализом. Проведение химической модификации необходимо для следующих целей а) повышение летучести соединения, б) увеличение термической и термокаталитической стабильности, [c.170]

    Высокая чувствительность масс-спектрометрического метода обеспечивает надежную идентификацию исследуемых веществ, имеющихся даже в очень малых количествах. Более того, тонкая структура получаемых обычно масс-спектров при условии правильного е анализа позволит глубже понять процессы образования осколочных и перегруппированных ионов. [c.48]

    При исследовании углеводородного состава нефтяных фракций масс-спектрометрическим методом в расчетах используются величины интенсивности молекулярных и осколочных ионов. Применение для расчетов интенсивностей пнков молекулярных ионов обеспечивает для исследуемых соединений анализ молекулярной формулы H2,i+2, где 2 — коэффициент водородной недостаточности, равный +2 для парафинов и изменяющийся на 2 единицы для каждого нафтенового кольца и каждой двойной связи в молекуле [100]. Наряду с этим метод молекулярных ионов позволяет устанавливать распределе[1ие углеводородов каждого типа ио молекулярным весам, т. е. определять величину п [ЮО]. Аналитические расчеты при использовании пнков молекулярных ионов сравнительно просты и требуют лишь измерения интенсивности соответствующих пиков и определения чувствительности. В отличие от метода молекулярных ионов , метод, использующий осколочные ионы, позволяет получать сведения [c.155]


    Газопроницаемость полимерных материалов может быть определена масс-спектрометрическим методом анализа газа. Диффузионная ячейка состоит из двух камер, разделенных испытуемой пленкой, причем одна из камер соединяется с резервуаром, содержащим исследуемый газ, а вторая камера — с ионным источником масс-спектрометра. Перед началом эксперимента в ячейке создается высокий вакуум (остаточное давление порядка ЫО мм рт. ст.). Газ, диффундирующий через пленку, поступает в ионный источник масс-спектрометра. Скорость его поступления непрерывно регистрируется самописцем в виде зависимости силы ионного тока от времени. Стационарное состояние переноса газа через мембрану характеризуется постоянством величины ионного тока. [c.253]

    Однако традиционно масс-спектрометрическому анализу подвергают продукты разложения полимеров (чаще всего продукты пиролиза) [43]. Поскольку состав продуктов пиролиза в определенных условиях достаточно специфичен, это позволяет применить масс -спектрометрию для идентификации полимеров и даже для анализа состава полимерных композиций например, масс-спектрометрический метод с успехом использовался для изучения состава сополимеров этилена и пропилена. [c.144]

    Масс-спектрометрический метод применяется для анализа углеводородных газов и паров жидких УВ и для изучения изотопного состава вещества [Соколов В. А., 1970]. Сочетание газожидкостной хроматографии с масс-спектрометрией дает значительный эффект при исследовании углеводородного состава нефтей. [c.238]

    Масс-спектрометрический метод (см. гл. 5). Масс-спектрометрический анализ органических соединений состоит в бомбардировке паров веш ества при давлении 10 —10 мм рт. ст. электронами, имеюш ими энергию 50—100 эв. В этих условиях молекулы распадаются с образованием положительно заряженных ионов, относительное содержание которых дает важную информацию [c.47]

    Для анализа природных газов применяется ограниченное число методов абсорбционные методы, использующие прибор типа Орса, методы, основанные на поглощении и последующем сжигании, например метод Бурреля, методы низкотемпературной перегонки и в последнее время масс-спектрометрический метод. Наиболее широкое применение имеют различные Варианты методов низкотемпературной перегонки. [c.10]

    Весьма перспективными являются ведущиеся в настоящее время в Советском Союзе и за рубежом работы по применению к исследованию масляных фракций нефти сдектральных и масс-спектрометрических методов анализа. Однако в применении к тяжелым масляным фракциям эти методы делают еще первые шаги. Так, например, по спектрам поглощения в ультрафиолетовой части спектра удается идентифицировать мнргоядерные ароматические углеводороды в высокомолекулярных нефтяных фракциях. [c.8]

    Возникновение и развитие масс-спектрометрического метода. Основой для создания и развития масс-спектрометрического метода анализа послужили работы по исследованию электрического разряда в газах при низком давлении. Принципы анализа положительных пучков, состоящих из ионов, возникающих при бомбардировке молекул вещества электронами, были изложены в 1910 г. Дж. Дж. Томсоном [1]. В его методе парабол положительные ионы, двигаясь в узкой трубке, подвергались действию параллельно расположенных электрического и магнитного полей и, попадая на фотопластинку, образовывали на ней серии параболических кривых. На каждую кривую укладывались частицы, характеризующиеся одинаковым отнощением массы к заряду (т/е), но различной скоростью. При исследовании многоатомных молекул получалось несколько парабол, что указывало на диссоциацию молекул с образованием различных положительно заряженных осколков. Так, молекула O U дает параболы, соответствующие ионам С+, 0+, С1+, С0+, U СС1+ и O I2+. При анализе углеводородов также наблюдались осколки молекул. [c.5]

    Другое направление — это исследование мономеров, примером которого может служить анализ метил- и фенилхлор-силанов. Замещенные хлорсиланы представляют собой сырье для получения полисилоксановых смол. Анализ смесей мономеров ранее осуществлялся путем четкой ректификации и инфракрасной спектрометрии, что было сопряжено с большой затратой времени. Многочисленные работы по применению для этой цели масс-спектрометрического метода показали, что с его помощью может быть получена более полная информация по составу смесей хлорсилановых мономеров. Была достигнута хорошая точность анализа стандартное отклонение менее 0,5 мол. % [21]. [c.11]

    Из данных, полученных при анализе смесей воды и спиртов [66, 70], следовало, что на ослабление памяти в наибольшей степени влияло уменьшение участка, расположенного между натекателем и ионным источником. Благоприятной для снижения эффектов сорбции оказалась промывка системы напуска исследуемым веществом в течение 2 лшн с последующей откачкой системы в течение I мин. Применение обогреваемой системы иапуска значительно расширило возможности масс-спектрометрического метода и в отношении диапазона молекулярных весов исследуемых соединений. Были исследованы [71] масс-спектры спиртов с 9 атомами углерода в молекуле при температуре системы напуска и камеры ионизации, равной 240° С, и проведен количественный анализ смесей спиртов с 6 и 7 атомами углерода в молекуле [72]. Относительная погрешность метода при температуре источника 250° С, проверенная на искусственных смесях, которые составлены из геп-танолов-2, -3 и -4, а также гексанола-1 и 2-этилбутанола-1, составляла около 5%, Максимальное отклонение от заданного значения составляло 19,3% а среднее — 8,27о- [c.45]

    Развитие низковольтовой аналитической масс-спектрометрии привело к созданию комплексного метода, в котором анализ исследуемого продукта осуществляется при обычных (50—70 эв) и пониженных (7—10 эв) значениях энергии ионизирующих электронов. При этом удалось использовать преимущества обоих методов и исключить их недостатки. В табл. 32 приведены результаты исследования бензина каталитического крекинга высокосернистого сырья [308]. Затрата времени на масс-спектрометриЧеский метод составляет [c.189]

    Результаты анализа бензино-керосиновых фракций с помощью комплексного масс-спектрометрического метода анализа при нормальной и низкой анергиях ионизирующих пектронов [311], объемн. % [c.191]

    Масс-спектрометрические методы анализа широко применяются в различных областях промышленности, науки и новой техники и дают возможность установить изотопный состав и исследовать состав продуктов реакций, содержание мнкропримесей в особо чистых веществах и т.. д. Но так как работы по масс-спектрометрии не предусмотрены учебной программой по аналитической химии, в данной книге эти методы не рассматриваются. [c.30]

    Эта тенденция вызвана ростом объема необходимых анализов и особенно той их доли, которая связана с анализом микроколи-честв и микроконцентраций веществ. Однако, признавая факт несомненно более высокой экспрессности и низких пределов обнаружения многих физических методов (до 10- г — в радиоактива-ционном, 10 2—10 г — в атомно-абсорбционном и масс-спектрометрическом методах), следует отчетливо сознавать ограниченность их применения, косвенный характер измерений, требующий калибровки, наличие специфических помех и систематических погрешностей, которые в отдельных методах при работе вблизи предела обнаружения могут достигать очень больших значений. [c.9]

    Первый порядок по отношению к N0 установили также авторы работ [275, 279—281]. Шелеф, Отто и Ганди [279] исследовали разложение N0 в смеси с Не в динамических условиях в диапазоне температур 573—1073 °К при концентрации N0 порядка 2000 частей на миллион. Анализ состава газа осуществлялся масс-спектрометрическим методом. В табл. 2.10 приведены экспериментальные результаты работы [279]. [c.106]

    Как указано в разд. 9.4.2, пределы обнаружения масс-спектрометрического анализа можно снизить за счет селективного сканирования ионов, что позволяет детектировать только некоторые ионы, вовлеченные в реакцию, не тратя время на несущественные области диапазона масс. Следует отметить, что использование тандемных масс-спектрометрических методов скрининга, как в случае сульфадимидина, обеспечивает более низкие пределы обнаружения. Тандемная масс-спектрометрия приводит к существенному улучшению селективности, так как детектируется только одна реакция, характеристическая для исследуемого класса соединений. Очевидно, что специфичность реакции, выбранной для разработки методики, крайне важна для достижения оптимальных результатов. Детектирование потери молекулы воды, например, в общем случае весьма неспецифично, — очень большое число соединений характеризуются потерей молекулы воды при химической ионизации. [c.305]

    В последнее время с большим успехом для анализа стабильных и короткоживуших продуктов при изучении элементарных реакций используют масс-спектрометрические методы. Для изучения реакций с участием ради1 ов эти методы сочетают со струевым реактором. Наиболее удачен диффузионный [c.126]

    Незащищенные олигопептиды, обладая низкой летучестью и термической лабильностью, практически не могут быть прюанализированы теми масс-спектрометрическими методами, которые включают перевод образца в парообразное состояние перед ионизацией. Для повышения летучести с целью исследования методом ЭУ эти олигопептиды переводят в алкиловые эфиры N-aцилпpoизвoдныx. Масс-спектры последних позволяют установить аминокислотную последовательность в олигопептидах на основе анализа ионов двух основных направлений их фрагментации. Главным направлением распада замещенных пептидов является "аминокислотный" тип фрагментации, обусловленный разрывами амидной связи с фиксацией заряда на карбонилсодержащих остатках. Образующиеся ионы далее теряют СО  [c.166]

    Появилось шого физических и химических методов анализа — масс-спектрометрические, рентгеновские, ядерно-физические, новые варианты электрохимических методов, интенсивно развивались фотометрические методы (особенно с использованием органических реагентов). Нужно отметить разработку и широкое расгфостранение атомно-абсорбционного метода (А. Уолш, К. Алкемаде, Б. В. Львов, 50-е годы). [c.19]

    Английский физик Дж. Томпсон, исследования которого положили начало развитию масс-спектрометрического метода анализа, в своей книге Лучи положительного электричества и их применение для химического анализа ( Кембридж, 1913 ) отмечал [1] Одна из основных причин написания этой книги - надежда убедить снециали-стов-химиков применять положительные лучи для химического анализа . Однако только в середине 30-х годов были зарегистрированы первые масс-спектры молекул органических соединений. С этого времени были начаты исследования взаимодействия ионов в газовой фазе, что совпало с необходимостью создания экспрессньпс и надежных количественных методов определения состава смесей газообразных углеводородов, образующихся в процессах переработки нефти. В 1943 г. такая методика была разработана Национальным Бюро Стандартов США при поддержке нефтеперерабатывающих корпораций. В нашей стране к разработке методов органической масс-спектрометрии подошли в конце 40-х - начале 50-х годов. [c.125]

    Исчерпывающие сведения о теории масс-спектрометрического метода и его применении в анализе различных материалов приведены в [1334, 1335а]. Наибольшими аналитическими возможностями обладает искровая масс-спектрометрия. С ее помощью осуществляется многоэлементный анализ жидкостей, образцов геологического, космохимического и биологического происхождения, легкоплавких металлов, стекол, керамики и пр. Одновременно может быть определено до 70 элементов-примесей из практически любой основы. [c.171]


Смотреть страницы где упоминается термин Анализ масс-спектрометрические методы: [c.259]    [c.26]    [c.128]    [c.28]    [c.30]    [c.288]    [c.40]   
Основы аналитической химии Часть 2 (1965) -- [ c.308 , c.313 ]

Основы аналитической химии Кн 2 (1965) -- [ c.308 , c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Дальнейшее развитие зондового масс-спектрометрического метода анализа

Зондовый масс-спектрометрический метод анализа твердых образцов

Масс-спектрометрические методы анализа твердых веществ

Масс-спектрометрический анализ методы постоянного веса

Масс-спектрометрический метод анализа Источники ионов

Масс-спектрометрический метод анализа газов

Масс-спектрометрический метод анализа нефтей

Метод анализа измерений масс-спектрометрический

Перспективы применения масс-спектрометрического метода анализа газов. И. Л. Агафонов

Правильность результатов зондового масс-спектрометрического метода анализа

Свободные радикалы, масс-спектрометрический анализ Сдвига поля метод

Совершенствование зондового масс-спектрометрического метода анализа

Токарев, А. А. Полякова, Л. О. Коган, О. И. Фальковская Масс-спектрометрический метод группового анализа моноциклоалканов 9Hi8—СцН22 (статистический анализ массспектров алкилциклопентанов и -гексанов)

Физические и физико-химические методы исследования Быстрый масс-спектрометрический метод изотопного анализа, кислорода органических веществ. —И. П. Граверов

Хромато-масс-спектрометрический метод анализа

Хромато-масс-спектрометрический метод анализа с идентификацией хроматографических пиков по кинетическим параметрам процесса ионизации



© 2025 chem21.info Реклама на сайте