Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы электрические разряды чер

    Физические основы процесса. Электрическая очистка основана на ионизации молекул газа электрическим разрядом. Если газ поместить в электрическое поле, образованное двумя электродами, к которым под- [c.238]

    В последние годы глубокому изучению подвергается четвертое состояние вещества — плазма. Переход в это состояние из газообразного осуществляется разрушением атомов и молекул вещества и превращением их в смесь положительно и отрицательно заряженных частиц. Плазму можно получить воздействием, например, на газ электрическим разрядом или высокими температурами (10 ...10 К). [c.9]


    При прохождении через газы электрических разрядов могут возникнуть как нейтральные радикалы, так и ионы. В искровых спектрах обычно появляются спектральные линии, характерные для ионов. Дуговые спектры и спектры, обусловленные тихими разрядами, обычно испускаются нейтральными атомами или активированными молекулами. [c.93]

    Взаимодействие ксенона с наиболее активным неметаллом — фтором при объемных соотношениях, близких к 1 2, при нагревании или при пропускании через смесь газов электрического разряда приводит к образованию ХеРг. Дифторид ксенона — белые кристаллы — при взаимодействии с водой полностью гидролизуются  [c.462]

    Электроочистка применяется для выделения мелкой пыли из газовых потоков, которую нельзя осадить другими способами. Электрическая очистка основана на ионизации молекул газа электрическим разрядом. Запыленный газ пропускается через неоднородное электрическое поле, образованное двумя электродами, к которым подведен постоянный электрический ток высокого напряжения (I/= 35 000 ч- 70 000 В). Катод обычно выполняют в виде проволоки, а анод — в виде трубы или пластин (рис. 3.30). Расстояние между электродами составляет 100—200 мм. При такой форме электродов образуется неоднородное электрическое поле, поскольку поверхность катода значительно меньше поверхности анода. У катода имеет место сгущение силовых линий и образуется ионизированный слой газа. Внешним признаком ионизации является свечение слоя газа или образование короны у катода. Поток электронов направляется к аноду, по пути сталкиваясь и оседая на встречных частицах пыли, заряжает их. Частицы, получившие отрицательный заряд, перемещаются к аноду и оседают на нем. При возникновении короны образуются ионы обоих знаков и свободные электроны. Под действием электрического поля положительные ионы движутся к коронирующему электроду — катоду и нейтрализуются на нем. Достигается высокая степень очистки — 95—99%. Скорость газа в трубчатых электро фильтрах (рис. 3.31) составляет 0,75—1,5 м/с, в пластин  [c.155]

    Приблизительно на 20 см ниже электродугового столба в горячие газы с температурой 1750 °К через несколько отверстий дополнительно впрыскиваются углеводороды с числом атомов углерода не менее двух. Впрыскивающиеся углеводороды снижают температуру электродуговых газов до 1250°К и в то же время нагреваются и крекируются с целью образования этилена. Выход этилена при инжекции пропана в газы электрического разряда составляет 35% вес. Для образования этилена таким способом подходящими оказались те же углеводороды, что и для производства этилена другими способами [16], [23]. [c.86]


    Ионизация газов. Электрический разряд в газах [c.22]

    Образование свободных радикалов наблюдается при воздействии на газы электрических разрядов аналогично действуют рентгеновские лучи и альфа-частицы, испускаемые радиоактивными веществами. [c.412]

    Осаждение дисперсных твердых и жидких частиц в электрическом поле (электроосаждение) позволяет эффективно очистить газ от очень мелких частиц. Оно основано на ионизации молекул газа электрическим разрядом. Если газ, содержащий свободные заряды (электроны и ионы), поместить между двумя электродами, создающими постоянное электрическое поле, то свободные заряды начнут двигаться по силовым линиям поля. Скорость движения и кинетическая энергия будут определяться напряженностью электрического поля. При повышении разности потенциалов до нескольких десятков киловольт кинетическая энергия ионов и электронов становится достаточной для того, чтобы они сталкивались с нейтральными газовыми молекулами, расщепляли их на ионы и свободные электроны. Вновь образовавшиеся заряды при своем движении также ионизируют газ. В результате образование ионов происходит лавинообразно, газ полностью ионизируется. Такую ионизацию называют ударной. При этом возникают условия для электрического разряда. При дальнейшем увеличении напряженности электрического поля возможны электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле один электрод делают в виде проволоки, а другой-в виде охватывающей ее трубы или расположенной рядом пластины (рис. 10-11). [c.226]

    Еще одним методом получения очень тонких слоев на пористой подложке является плазменная полимеризация. Плазма получается посредством ионизации газа электрическим разрядом высокой частоты (до 50 МГц). Используются два типа плазменных реакторов 1) электроды помещены внутри реактора 2) обмотка находится вне реактора. На рис. П1-13 показан аппарат, в котором может происходить плазменная полимеризация с обмоткой, находящейся вне реактора (так называемый безэлектродный тлеющий разряд). Давление в реакторе поддерживается на уровне от 10 до 1000 Па (10 " — 10 атм). На входе в реактор газ ионизируется. Реагирующие вещества могут быть введены отдельно от плазмообразующего газа, что открывает возможность получения различных радикалов при столкновениях с ионизованным газом, причем эти радикалы способны реагировать и друг с другом. Образующийся достаточно высокомолекулярный про- [c.106]

    В 1855 г. немецкий стеклодув Генрих Гейслер (1814—1879) изготовил стеклянные сосуды особой формы и вакуумировал их им же изобретенным способом. Его друг немецкий физик и математик Юлиус Плюккер (1801—1868) использовал эти трубки Гейслера для изучения электрических разрядов в вакууме и газах. [c.147]

    Из схемы, приведенной на рис. 2, следует, что истинная электрохимическая система представляет собой цепь из последовательно включенных проводников первого и второго рода. С этой точки зрения электрический разряд в газах не может быть назван чисто электрохимическим процессом, так как газы в таких условиях обладают смешанной электронно-ионной проводимостью, и многие фундаментальные законы электрохимии к ним неприменимы. [c.14]

    Критерием оценки способности источника воспламеняться является минимальная энергия зажигания — наименьшая величина энергии искры электрического разряда, достаточной для воспламенения наиболее легковоспламеняемой смеси газа или пара с воздухом. Минимальную энергию зажигания учитывают при классификации газо- и паровоздушных смесей по пределам воспламенения. [c.14]

    Он проводится в электрических разрядах, представляющих широ кую низкотемпературную дугу. Температура в реакционном пространстве поддерживается около 265°. Дуга образуется в пространстве между вращающимся диском, представляющим собой один электрод, и тремя неподвижными электродами. Газ в реакционное пространство поступает через три отверстия, расположенные во вращающемся диске. Установка, работающая на указанном принципе, состоит из шести реакторов. В каждом из них имеется по три зоны с низкотемпературными дугами. Во все эти зоны газ поступает параллельно, а между реакторами движется последовательно. Содержание ацетилена в конечном газе составляет около 10%. Процесс в промышленности еще не внедрен [230]. [c.59]

    Полимеризация органического соединения может быть проведена или путем электрического разряда в среде паров только мономера, или в среде смеси мономера с газом (Не, Аг, N2, Н2). Механизм полимеризации, по-видимому, также зависит от того, используется или нет плазма газа. [c.78]

    Прохождение тока через газ по историческим причинам получило название электрического разряда . Явления, возникающие при газовом разряде, сложным образом зависят от рода и давления газа, материала электродов и их геометрии, окружающих тел, а также от силы протекающего тока. Различные формы разрядов, получили специальные наименования темный разряд, корона, тлеющий разряд и т.д. Мощные разряды (с силой тока от 10 1 до 10 А) даже при различных условиях обладают рядом общих особенностей, что позволяет объединить их под одним названием - дуговой разряд . Термин дуга применяют к устойчивым формам разряда. Электрическая дуга была открыта В.В. Петровым в 1803 г. [c.80]


    Отличительной особенностью газовых лазеров является то, что в них вещество имеет малую плотность, поэтому возможность его разрушения исключена. Возбуждение газов происходит в результате упругих и неупругих столкновений, ионизации и рекомбинации, диссоциации, химических реакций и других процессов. Это приводит к разнообразным методам создания инверсной заселенности (электрический разряд, оптическая накачка, химические реакции и др.). [c.99]

    Исторически первой формой электрического разряда в газе, примененной для проведения химических реакций, был искровой разряд [2-4]. В искровом разряде протекают самые разнообразные реакции синтеза (КНз, N0, H N и О3), превращения и разложения углеводородов и многие другие [5]. Не случайно поэтому зарождение жизни на Земле по одной из гипотез связывают с искровым разрядом в атмосфере - молнией. Высокая температура в канале приводит к разложению молекул газа на атомы и радикалы, которью, попадая в окружающую среду с более низкой температурой, инициируют различные реакции. [c.173]

    Радиационно-химические газофазные процессы. Действие ионизирующих излучений на газы приводит к таким процессам, как ионизация, образование отрицательного иона, перезарядка частиц, мономолекулярные превращения первичных ионов, бимолекулярные ион-мо-лекулярные реакции и нейтрализация ионов [17]. Подобные же элементарные процессы могут протекать и под воздействием электрического разряда, коротковолнового ультрафиолетового излучения и др. Однако радиационное воздействие имеет особенности, позволяющие создать промышленные технологические процессы. [c.182]

    Все это не означает, конечно, что процессы, сопровождающиеся возрастанием С, не могут происходить при постоянных температуре и давлении. Но такие процессы происходят лишь по мере получения работы извне, например путем электролиза или с помощью электрического разряда в газах (что требует затраты в обоих случаях электрической энергии) или действием света в фотохимических реакциях. В частности, так происходит фотосинтез в растениях. [c.223]

    Газоразрядные лампы — это приборы, в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов, паров металла и нх смесей. [c.115]

    При умеренных температурах ионы могут образовываться из молекул газа под действием частиц высоких энергий или жесткого электромагнитного излучения. Это происходит, -например, при прохождении через газ а- и (З-частиц и у-излучения при радиоактивном распаде, при облучении рентгеновскими луча ,и1, при действии пучка электронов или других частиц, полученного в ускорителях элементарных частиц, при действии нейтронов в ядерных реакторах, при прохожденш через газ электрического разряда. В частности, ионизацией газа сопровождается действие жесткой солнечной радиации и космических лучей на верхние слои атмосферы н действие газовых разрядов на нижние слои атмосферы. [c.27]

    Ионизация газов, электрические разряды в газах. Как известно, любой газ представляет собой скопление беспорядочно движущихся молекул, большая часть -которых обычно нейтральна, т. е. лишена заряда. Вместе с тем каждый газ (в том числе воздух) содержит также некоторое число носителей зарядов в виде заряженных молекул (положительных или отрицательных ионов) и свободных электронов. Как те, так и друлие возникают по разным причинам под воздействием света (ультрафиолетовых лучей), высокой температуры, излучения радиоактивных веществ и Др. [c.131]

    Физические основы процесса. Электрическая очистка основана на иони зации молекул газа электрическим разрядом. Если ионизированный газ поместить в электрическое поле, образованное двумя электродами, к которым подведен постоянный электрический ток высокого напряжения, то ионы и электроны начнут перемещаться по направлению силовых линий. Направление вектора скорости заряженных частиц будет определяться их знаком, а скорость движения и, следовательно, кинетическая энергия — напряженностью электрического поля. При повышении разности потенциалов между электродами (напряженности электрического поля) до нескольких десятков тысяч вольт кинетическая энергия ионов и электронов возрастает настолько, что они при своем движении, сталкиваясь с нейтральными газовыми [c.251]

    Минимальная энергия зажигания — наименьшая энергия электрического разряда, достаточная для воспламенения наиболее легковоспламеняющейся смеси газа, пара или пыли с воздухом. Минимальную энергию зажигания используют для обеспечения пожаровзрывобезопасных условий переработки горючих веществ и электростатической искробезопасности технологических процессов. [c.12]

    К разветвленным цепным реакциям относится, нанрнмер, реакция образова- ия воды из простых веществ. Экспериментально установлен и подтвержден расчетами следующий механизм этой реакции. В смеси водорода с кислородом при лагревании или пропускании электрического разряда нронсходнт взаимодействие чолскул этих газов с образованием двух гидроксильных радикалов  [c.183]

    Электроны как отдельные частицы исследовались физиками, занимавшимися изучением электрических разрядов в разреженных 1азах при больших напряжениях. Катодные лучи представляют собой пучок электронов, оторванных от атомов газа. Дж. Дж. Томсон, изучая отклонение катодных лучей в электрическом и магнитном полях показал, что эти лучи образованы отрицательно заряженными частицами, и измерил отношение заряда этих частиц к их массе. Милликен завершил эти исследования, поставив опыт с капельками масла, благодаря которому удалось измерить заряд электрона. В сочетании с результатами Фарадея это позволило вычислить число Авогадро, т. е. число электронов, составляющих 1 Г заряда, или число частиц в моле любого вещества. Масс-спектрометр, потомок газоразрядных трубок Крукса и Томсона, представляет собой современный акаля тический прибор, в котором измеряется отношение заряда к массе любой атомной или молекулярной частицы, несущей на себе электрический заряд. [c.54]

    Многие газы (Н1, С1 и др.) при нагревании или действии электрического разряда наряду с лтейчатым или полосатым спектром дают также непрерывный спектр. [c.10]

    Свойства. Азот —бесцветный газ, не имеющий вкуса и запаха, т. пл. —210°С, т. кип. —196°С. При комнатной температуре он реагирует только с литием и образует комплексы с некоторыми / /-элементами (см. дополнение). При высоких температурах N2 интенсизно взаимодействует с многими металлами. Атомный азот, получаемый при действии на N2 электрического разряда (в приборе типа озонатора) активен даже при комнатной температуре, он реагирует с металлами и неметаллами (3, Р, Hg и др.). [c.394]

    Яаряды возникают ирн движении горючих жидкостей-диэлектриков в емкостях и трубопроводах. При дви,Кении газов и паров также возникают заряды статического электричества. При этом отверстие, через которое выбрасывается струя, обычно приобретает заряд противоположного знака по отношению к знаку заряда струи газа или пара, что создает условия для электрического разряда, [c.147]

    Ядерная модель атома. Начальные сведения о составе и строении атомов, которыми располагала наука, были получены в результате изучения явлений радиоактивности, электрического разряда в газах, электролиза и некоторых других яплений. Было найдено, что в состав атомов всех элементов входят электроны. Так как в нормальном состоянии атомы нейтральны, то, следовательно, в них должны содержаться и какие-то положительно заряженные частицы. [c.27]

    То же относится и к химическим процессам. Взаимодействие водорода и кислорода с образованием воды может происходить самопроизвольно, и осуществление этой реакции дает возможность получать соответствующее количессво работы. Но, затрачивая работу, можно осуществить и обратную реакцию — разложения воды на водород и кислород, — например, путем электролиза. И другие химические реакции, которые по своим термодинамическим параметрам не могут в данных условиях совершаться самопроизвольно, можно проводить, затрачивая работу извне. Большей частью это осуществляют или путем электролиза, или при электрическом разряде в газах, или действием света, или же путем повышения давления (причем одновременно изменяются и условия проведения реакции). Из хорошо известных процессов такого рода можно назвать фотосинтез в растениях, получение натрия и хлора путем электролиза расплавленного хлористого натрия, получение металлического алюминия из бокситов путем электролиза, синтез аммиака при высоком давлении и др. [c.209]

    Остановимря еще иа реакциях атомарного азота. Практически единственным источником атомов N является электрический разряд в молекулярном азоте или в смеси его с благородным газом. Азот, подвергнутый действию электрического разряда, благодаря приобретенной им при этом высокой химической активности, получил название активного азота [597, 601]. Одним из внешних признаков активного азота является послесвечение, наблюдающееся после прекращения разряда. Обычно различают два вида послесвечения коротко- и долгоживущее послесвечение. Для изучения химических свойств активного азота наибольший интерес представляет последнее, часто называемое льюис-рэлеевским послесвечением. [c.33]

    При рассмотрении химических реакций, протекающих в электрических разрядах, а такл о под действием ионизирующих излучений мы сталкиваемся с ионизованным 1 агои. Химическая роль ионизации, однако, в этих двух случаях весьма разли Н . 13 области электрического разряда средняя энергия электронов обычно 1аметно ниже потенциала понпаяции молекул. Поэтому ионизация электронным ударом в разряде, будучи необходимой для поддержания разряда, дла введения электрической энергии в газ, обычно дает малый вклад в совокупность химических превращений. [c.173]

    Синтез ацетилена из метана (а также из смеси газов, содержащей метан) представляет собой один из примеров органического синтеза в электрическом разряде, осуществленного на практике в значительных масштабах и усношно конкурирующего с обычным, карбидным методом получения ацетилена. Для получения ацетиленл из метана применялись различные формы электрического разряда. Тпк как, однако, уже первые исследования показали, что и тихом разряде выход ацетилена ничтожно мал, то все дальнейшие попытки осуществления этой реакции с выходом jH , представляющим практический интерес, в основном были сосредоточены на использовании дугового разряда. (Литературу см. в [4, 41].) [c.181]

    В канале электрического разряда развивается температура псэядка 10 000°С, значительно превосходящая (в- Б инертной ср( де энергия электрического разряда рассеивается в результате теплопроводности, в горючей смеси она приводит к почти М1 ювенному завершению. химической реакции в нагретом газе. [c.146]


Смотреть страницы где упоминается термин Газы электрические разряды чер: [c.247]    [c.113]    [c.668]    [c.295]    [c.437]    [c.179]    [c.151]   
Жизнь как она есть, ее зарождение и сущность (2002) -- [ c.63 ]




ПОИСК





Смотрите так же термины и статьи:

Воспламенение газов электрическим разрядом

Инертные газы, электрический разряд

Ионизация газов. Электрический разряд в газах

Классификация газо- и паровоздушных смесей по воспламеняемости от электрических разрядов

Метод грубой оценки вакуума по свечению при электрическом разряде в газе

Механизм электрического разряда в газе

Электрический дипольный момент разряд в газе

Электрический разряд в газах



© 2025 chem21.info Реклама на сайте