Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Застекловывание полимера

    Выше температуры застекловывания полимер начинает переходить из стеклообразного состояния в высокоэластическое и сохраняет его при дальнейшем нагревании до некоторой температуры, называемой температурой текучести. Выше этой температуры у полимера появляется необратимое и самопроизвольное перемещение макромолекул относительно друг друга (текучесть). [c.357]


    В случае застекловывания полимеров макромолекулы лишены такой возможности вследствие их офомной длины. Только в идеальном кристалле по- [c.125]

    Интересным примером влияния надмолекулярных структур на кинетику реакций макромолекул может служить твердофазная полициклизация полигидразидов, подробно исследованная в работах Коршака и Берестневой [61—64]. Образование циклов в цепях полигидразидов возможно лишь в случае цмс-конфигурации гидра-зидных фрагментов, однако, более выгодной (с точки зрения внутримолекулярных взаимодействий) является гранс-форма, которая благодаря эффектам упаковки в твердом состоянии становится еще более выгодной. Поэтому для осуществления циклообразования необходим поворот вокруг связи N—К, который возможен лишь при температурах, превышающих температуру стеклования. По мере образования циклов цепь становится более жесткой, температура стеклования возрастает, и тогда, когда она становится соизмеримой с температурой, при которой проводится циклизация, реакция практически заканчивается вследствие застекловывания полимера. Поэтому достижение высокой степени превращения возможно лишь при высоких температурах, когда начинается уже деструкция полимера. Достаточно сложный процесс полициклизации еще больше усложняется в том случае, когда исходный поли-гидразид имеет ориентированную или кристаллическую структуру [63], так как в этом случае конформационные переходы затруднены в еще большей степени это снижает скорость полициклизации и не позволяет довести реакцию до высоких степеней превращения. [c.50]

    Кристаллический полимер выше температуры плавления переходит в вязкотекучее состояние, т. е. приобретает свойства жидкости. Быстрое охлаждение вызывает застекловывание полимера, т. е. структура его становится уже не кристаллической, а аморфной. Но при повышении температуры или при растяжении такой застеклованный полимер способен полностью или частично кристаллизоваться. Наличие аморфных участков облегчает и ускоряет процесс кристаллизации в областях с упорядоченной структурой. В то же время наличие аморфных областей, дефектов структуры облегчает переработку полимера в пленку. Это связано с гетерогенностью структуры таких пленок, поскольку их можно рассматривать как самоармирующийся материал. [c.21]

    В ТМА застеклованных полимеров важной характеристикой является температура (или, точнее, температурная область) размягчения. Размягчение представляет собой процесс, прямо противоположный застекловыванию полимер, в котором сегментальная подвижность была скована (вязкость полимера в области стеклования превышает 10 пз, времена релаксации — более 10 сек.), обретает способность к проявлению такой подвижности . Экспериментально определяемую температуру размягчения в ТМА принимают обычно за температуру стеклования. Однако это не всегда справедливо. Как процесс застекловывания, так и процесс [c.79]


    Андерсен [261, который провел обширные исследования влияния давления на термические характеристики полимеров, отмечает, что теплоемкость очень медленно падает с ростом давления в стеклообразном состоянии. То же самое справедливо и для расплавов полимеров. Конечно, если давление вызывает температурные переходы, Ср изменяется заметно падает при застекловывании и сильно возрастает и затем снижается при кристаллизации. Таким образом, при переработке полимеров можно ожидать существенного влияния давления на Ср при температурах среды несколько выше Tg и но не ниже этих температур. Для практических целей можно считать, что Ср от давления не зависит, медленно меняется при температурах ниже и Гт и в расплаве (15—30 % на 100 С), сильно возрастает при плавлении (в 5—10 раз) и скачкообразно возрастает приблизительно на 10 % при переходе через температуру стеклования. В табл. 5.1 для ряда промышленных полимеров приведены значения Ср при комнатной температуре, а также значения плотности, коэффициентов теплопроводности и термический коэффициент линейного расширения. [c.128]

    Межмолекулярные силы, действующие между отдельными атомами и их группами, препятствуют изменению формы макромолекул. Чтобы изменить форму макромолекул, надо преодолеть действие межмолекулярных сил, что сопряжено с затратой определенного количества энергии. С повышением температуры растет энергия макромолекул, причем энергия теплового движения может оказаться больше энергии взаимодействия молекул друг с другом, в результате чего вероятность изменения конфигурации и взаимного расположения молекул увеличивается. Наоборот, при охлаждении полимера перегруппировка макромолекул практически прекращается, в результате полимер остается по своей неупорядоченной структуре в аморфно-жидком состоянии и при температурах значительно ниже температуры кристаллизации. Таким образом, даже при сильном охлаждении высокополимеры не переходят в упорядоченное (кристаллическое) состояние. В этом ВМВ сходны со стеклами, и такое состояние высокополимера называется стеклообразным. Процесс застекловывания идет часто в довольно значительном температурном интервале. Та температурная область, в которой происходит такой переход, называется температурой перехода, в частности для явления застекловывания она называется температурой застекловывания. [c.357]

    В седьмой главе рассмотрена важнейшая характеристика термостойкости полимеров - температура начала их интенсивной термической деструкции, получена формула для расчета такой температуры исходя из химического строения полимера, выявлены условия опережения термодеструкции полимера его застекловыванию или плавлению, отмечена необходимость учета образующихся продуктов термодеструкции, которая начинается с распада концевых групп макромолекул полимера. [c.16]

    При таюм рассмотрении, естественно, не учитывается скелетная жест-сость самой макромолекулы, т.е. возможность или невозможность вращения )тдельнь[х групп в основной цепи относительно ординарных связей. Между СМ этот фактор может быть решающим и оказьшать офомное влияние на гемпературу стеклования полимера. Следует обратить внимание еще на одно )чень важное обстоятельство, В случае застекловывания низкомолеку лярных кидкостей, молекулы которых содержат полярные фуппы, все они могут всту -тать во взаимодействие друг с другом, поскольку для этого нет никаких сте-зических препятствий. [c.125]

    Переход от высокоэластического состояния полимеров к стеклообразному происходит в определенном температурном интервале, среднюю температуру которого принято называть температурой стеклования. В процессе перехода от эластомера к полимерному стеклу наблюдается постепенная фиксация отдельных звеньев цепных молекул Связи, возникающие вследствие ослабления теплового движения, имеют флуктуационный характер и не являются постоянно существующими. За-стекловывание полимера происходит в том случае, если число фиксированных звеньев становится столь большим, что расстояния между этими звеньями будут меньше, чем длина сегмента молекулы, и гибкость цепной молекулы уже не сможет проявиться . Теоретически возможны два механизма застекловывания, обуслоплен-ные либо увеличением взаимодействия мел<ду молекулами, либо возрастанием жесткости каждой отдельной молекулы полимера [c.117]

    Для существенно аморфных полимеров (система полиметилметакри-лат — диметилформамид) характерно застекловывание с выжиманием растворителя при медленном растяжении отвердевание протекает в две стадии, причем вторая, медленная стадия, подобна синерезису. Однако при очень Выжимание растворителя из высоких <7 растворитель выжимается растягиваемой струи 3% раствора сразу, что весьма эффектно проявля- полиметилметакрилата в диметил-ется в виде густого тумана вокруг [c.71]

    Таким образом, с помощью метода застекловывания растворов удается зафиксировать и изучить структуры растворов полимеров прямым методом с помощью электронного микроскопа. Предварительные результаты настояБ] его исследования показывают, что непосредственно в растворе полимеров могут образовываться упорядоченные надмолекулярные структуры в виде пачек цепей. [c.318]


    К сожалению, диэлектрическое поведение воды, сорбированной полимером, осложняется в результате другого эффекта. Кроме биполярной переориентации, которая только что обсуждалась, часто имеют место эффекты ионной природы. Под влиянием электрического поля положительные и отрицательные заряды диффундируют к противоположно заряженным пластинам конденсатора, что приводит к возникновению пространственных зарядов, которые также дают вклад в измеряемые значения е и е". Эти вклады известны как эффекты Максвелла — Вагнера [25]. В принципе подобные эффекты можно подавить, проводя измерения при высокой частоте, низкой температуре или используя деионизованные образцы. Вследствие указанных осложнений интерпретация полученных результатов до сих пор не осуществлена. Однако, как ни точна молекулярная интерпретация, и биполярная ориентация, и эффекты Максвелла — Вагнера зависят от подвижности молекул воды. Интересно исследовать эту подвижность при более низких температурах, когда молекулы воды становятся более инертными и существует возможность застекловывания. [c.142]

    Процесс отверждения связующего с образованием сетчатого полимера сопровождается переходом связующего из вязкой жидкости в твердое тело. В процессе отверждения при постоянной температуре вязкость связующего на начальной стадии или жесткость его на конечной стадии могут резко возрастать не только в результате гелеобразования, но и при застекловывании связующего вследствие увеличения молекулярного веса, образования новых химических и физических связей или увеличения плотности сетки. Физическое состояние полимера на любой стадии его образования и, следовательно, гибкость его цепей определяются соотношением между температурой стеклования полимера и температурой отверждения. Если температура отверждения становится ниже [c.98]

    Большие н неиспользованные возможности таит в себе второй путь — химическая и физическая модификация в процессе переработки полимеров в пленки. Образование пленок происходит после того, как в жидкости или расплаве, нанесенном в виде тонкого слоя на поверхность с малой адгезионной способностью, происходит образование связей, соединяющих молекулы вещества в единую прочную систему. Возникновение таких связей осуществляется в результате понижения температуры и застекловывания расплава или путем реакций полимеризации, поликонденсации и сшивания. В первом случае необходимым условием образования прочных пленок является достаточно высокое значение молекулярного веса полимера, из которого получается пленочный материал Во втором случае, естественно, возможен рост макромолекул до достижения необходимого значения молекулярного веса или образование новых химических связей, соединяющих макромолекулы в единое целое, непосредственно в процессе пленкообразования. [c.102]

    Но на практике при охлаждении и монодисперсных полимеров (особенно с весьма большим молекулярным весом) в большинстве случаев не удается ни определить, ни вообще добиться их кристаллизации вследствие чрезвычайной медленности процесса. Охлаждая полимер, мы так быстро проходим температуру кристаллизации, что за это время громоздкие макромолекулы не успевают перейти из неупорядоченного состояния в состояние порядка (кристалл). При переходе же к еще более низким температурам из-за ослабления обоих родов движения в цепях перегруппировка макромолекул практически прекращается в результате полимер остается по своей неупорядоченной структуре в аморфно-жидком состоянии и при температурах ниже температуры кристаллизации. Таким образом, даже при сильном охлаждении высокополимеры переходят не в кристаллическое, а в переохлажденнде или, по аналогии с такого рода явлением в стекле, стеклообразное состояние. Понятно, что вследствие все большего ослабления обоих родов движения в стеклообразном состоянии полимер постепенно теряет свои как эластические, так и пластические свойства и приобретает свойство хрупкости. В то время как при кристаллизации все свойства вещества изменяются резко, скачком и при строго определенной температуре, процесс застекловывания совершается в некотором, иногда довольно значительном температурном интервале, а изменение свойств в процессе застекловывания идет без резкого скачка. Однако в указанном температурном интервале на кривой исследуемого свойства замечается характерный излом. Явление застекловывания получило наименование фазового перехода второго рода, а та температурная область, в которой происходит такой переход (определяемая по изгибу кривой какого-либо свойства), называется температурой перехода. В частности, для явления застекловывания она называется температурой застекловывания, или точкой хрупкости , и обозначается tg. Фазовый переход второго рода не сопровождается тепловым эффектом и его нельзя смешивать с фазовым переходом первого рода (конкретно—с затвердеванием и плавлением) низкомолекулярных веществ, который происходит скачкообразно, с тепловым эффектом, и имеет иной физический смысл. В зависимости от того свойства (объем, теплоемкость, вязкость и т. д.), по излому на кривой которого находят tg, величина последнего несколько меняется, но если сравнивать величины, найденные по одному и тому же свойству, то они становятся характерными для каждого высокополимера. Так, например, для полистирола / .ж+80°. [c.170]

    Застекловывание этих участков при понижении температуры ниже приводит к тому, что область температур, в которой полимер не обладает хрупкостью, располагается для кристаллического [c.278]

    На рис. 6.22 приведена обобщенная схема процессов, протекающих при взаимодействии гидрофобных полимеров с водой. Этот процесс следует рассматривать как сложный, многостадийный, включающий этапы диффузионного насыщения материала водой в соответствии с гидратными числами функциональных групп мономерных звеньев и гидрофильностью других компонентов образование пересыщенных растворов, их распад, формирование и рост осмотических ячеек термоокислительную деструкцию, приводящую к образованию новых гидрофильных компонентов, увеличивающих сорбционную емкость материала накопление необратимых изменений в химической структуре материала, его застекловыванне, фиксацию фазовых неоднородностей. На каждой из этих стадий, в зависимости от конкретного состава и природы полимерной матрицы, могут возникать дополнительные процессы фазовые переходы в системе продукты деструкции — полимер — [c.248]

    Еще более слонсные соотношения свойств могут наблюдаться у сополимеров и привитых полимеров, так как структурные единицы (атомные группы) макромолекул их могут быть различны по составу и строению. В. А. Кгргин и Г. Л. Слонимский указывают, что в таких случаях при значительном различии в температурах застекловывания раз- [c.586]

    Ориентированное состояние, достигнутое при растяжении расплавов и растворов полимеров и зафиксированное в результате застекловывания или кристаллизации, обусловливает анизотропию механических, оптических и других физических свойств полимерных материалов. В свою очередь, измерения различных свойств материала в разных направлениях до и после деформирования служат характеристикой ориентации макромолекул полимера. [c.244]


Смотреть страницы где упоминается термин Застекловывание полимера: [c.131]    [c.48]    [c.157]    [c.64]    [c.100]   
Энциклопедия полимеров том 1 (1972) -- [ c.581 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.581 ]




ПОИСК







© 2025 chem21.info Реклама на сайте