Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Усадка полимера при охлаждении

    Во всех рассмотренных методах калибрования труба приобретает заданный размер по наружному диаметру. Внутренний диаметр трубы зависит от толщины стенок. Для обеспечения заданного наружного диаметра трубы диаметр калибрующей гильзы рассчитывают с учетом усадки полимера при охлаждении  [c.146]

    Циклограмма работы литьевой машины приведена на рис, 1.7. Червяк движется вперед и заполняет форму расплавом, а затем удерживает расплав под высоким давлением в течение периода времени, который называется выдержкой под давлением. Обратный клапан, установленный на конце червяка, не позволяет полимеру вытекать из формы обратно в канал червяка. Во время выдержки под давлением в форму нагнетается дополнительное количество расплава, компенсирующее уменьшение объема, вызванное термической усадкой при охлаждении. Несколько позже впуск, представляющий собой узкий вход в форму, застывает, изолируя форму от пластикатора. По мере охлаждения и затвердевания расплава давление в форме снижается, однако необходимо следить за тем. [c.21]


    При изготовлении грампластинок, как ни в какой другой области, требуется высокая точность при отливке полимера в форму. Для формования под давлением, чтобы заполнить форму с 1000 п более сложных бороздок, полимер должен иметь малую вязкость расплава и очень высокое сопротивление усадке при охлаждении. Этим требованиям вполне отвечают сополимеры хлористого винила и винилацетата. Полученные из них пластинки очень устойчивы к изменениям влажности и телшературы и отличаются большой водостойкостью. Они, в сущности, не ломаются и сравнительно мало повреждаются при царапании. [c.406]

    После того как полость формы заполнится расплавом, давление в форме продолжают поддерживать на прежнем уровне для обеспечения уплотнения материала внутри формы ( подпитка расплавом) и компенсации термической усадки полимера, вызванной его охлаждением и затвердеванием. Подпитка быстро и ощутимо повышает давление в форме. При снятии прикладываемого извне давления (при возвратном движении червяка или поршня литьевой машины) происходит обратный ток расплава из полости формы до тех пор, пока полимер не затвердеет во впускном канале или пока не сработает обратный клапан. После прекращения утечки, если она имела место, происходит охлаждение полимера, сопровождающееся небольшой усадкой, вызванной локальными течениями. Когда полимер полностью затвердеет, форма раскрывается и [c.521]

    Слишком быстрое охлаждение. При усадке полимер отделяется от проволоки [c.169]

    В процессе изготовления изделий, особенно методом литья под давлением, большие и неравномерные усадки при охлаждении отформованных изделий обусловливают трудности в получении деталей с точностью размеров на уровне точности деталей из металлов. Более того, различие в усадке приводит к короблению отформованных изделий, особенно с малой жесткостью, а также к возникновению в них других типов остаточных деформаций. Поэтому условия формования и конструкция литьевой формы оказывают решающее влияние на качество изделий. Точные допуски можно получать при изготовлении изделий из полимерных материалов механической обработкой, например зубчатых колес, но даже в этом случае вследствие большого термического расширения применение деталей с малыми допусками ограничивается небольшим интервалом температур. Тем не менее, широкое применение полиамидов и сополимеров формальдегида в производстве зубчатых колес, шестерен, подшипников скольжения, втулок, кулачков и т. п. показывает большие возможности использования полимеров для изготовления деталей с высокой точностью размеров. [c.243]


    Прообразом этого метода является применявшееся еще в древние времена литье металлов в полую форму. Однако из-за очень высокой вязкости расплавы полимеров не удается наливать в формы. Силы тяжести оказывается недостаточно для того, чтобы вызвать течение расплава с заметной скоростью. Поэтому расплав приходится впрыскивать в полость формы при помощи специального плунжера. И даже после того, как форма заполнена и процесс охлаждения начался, туда необходимо подать дополнительное количество полимера, чтобы скомпенсировать термическую усадку, сопровождающую процесс охлаждения, и обеспечить точное воспроизведение конфигурации внутренней полости формы. Многообразие изделий, производимых методом литья под давлением, огромно — от крошечных шестерен до таких больших изделий, как автомобильные бамперы и ванны. Большинство полимеров, включая композиционные наполненные [c.20]

    Усадка полимеров. Когда конструктор проектирует форму для изготовления такого изделия как расческа, нет большой необходимости в точном соблюдении размеров, поскольку расческа употребляется сама по себе и не должна устанавливаться в какую-либо другую деталь. Однако при изготовлении пластмассовой крышки получение точных размеров очень важно, так как крышка должна плотно закрывать коробку. Поскольку все полимеры при охлаждении усаживаются, размеры формы делают несколько большими, чем требуемые размеры изделия. [c.143]

    Для предотвращения отделения изоляции от проволоки вследствие значительной усадки полимера при резком охлаждении [c.66]

    Внутренние напряжения, возникающие в изделиях при переработке поликарбоната методом литья под давлением, в результате усадки полимера или нарушения технологического режима могут быть причиной растрескивания изделий, особенно при повышенной температуре или при действии воды или агентов, вызывающих набухание. Для снижения внутренних напряжений, возникающих в отливке при быстром ее охлаждении, а также для улучшения текучести расплава температуру литьевой формы необходимо поддерживать в пределах 80— 120 °С. Поверхность формы должна быть хорошо отполирована, но хромирование ее не обязательно. Целесообразно закаливать форму для предохранения ее от повреждений. [c.174]

    Усадка реактопластов происходит как в процессе их формования (технологическая усадка), так и в готовых изделиях (так называемая последующая усадка). Технологическая усадка зависит от усадки самой смолы, усадки наполнителя, режима снятия давления с отливки, термического сокращения материала. Кроме того, на эту усадку влияет температура предварительного нагрева и пластикации материала, продолжительность впрыска, скорость охлаждения, распределение давления в форме, расположение и форма элементов литниковой системы, форма и толщина стенок изделия. Последующая усадка полимера в готовых изделиях при повышенных температурах определяется физико-химическими изменениями и связана, например, с удалением летучих. Так, для аминопластов эта усадка возникает в результате того, что даже в отвержденном материале продолжается процесс поликонденсации и удаления летучих. [c.246]

    Приведем ряд примеров. Изотактический полипропилен обычно кристаллизуется в моноклинной форме. Однако при быстром охлаждении полипропилен кристаллизуется в виде сферических агломератов, состоящих из несовершенных гексагональных кристаллитов [9, 10]. Аналогичные результаты получил Уайт с сотр., исследуя волокно изотактического ПП, охлаждавшееся на воздухе и в воде [11 ]. Полибутен-1 при кристаллизации из расплава обычно образует кристаллы формы П [12]. Однако если расплав полибутена-1 подвергнуть деформации и только после этого произвести изотермическую кристаллизацию, то он кристаллизуется преимущественно в виде стабильных кристаллов формы I. Полимер, состоящий из кристаллов формы I, обладает более высокой плотностью (р = 930, Ри = 877 кг/м ). Более того, в ряде случаев наблюдается переход кристаллической формы П в форму I с максимальной скоростью при комнатной температуре [13]. Поэтому можно ожидать, что любые изделия из полибутена-1 будут подвергаться усадке при хранении. Величина этой усадки с увеличением деформации расплава уменьшается. Таким образом, инженер-технолог, прибегая к ориентации расплава, может избавиться от этой неприятной особенности весьма полезного полимера. [c.49]

    Механическое стеклование определяется частотой или временем механического воздействия, а структурное — тепловым режимом (скоростью охлаждения). Опыт показывает, что оба процесса стеклования независимы и их можно экспериментально разделить. Значение Тм соответствует максимуму механических потерь (см.. рис. 2.7), а Тс Р — точке излома на кривой тепловой усадки (см. рис. 2.5). Если тепловой режим охлаждения задан, то тем самым задана Тс р. При этом механическое воздействие может производиться независимо от теплового. Меняя режим механического воздействия, можно получать различные Тс . И наоборот, меняя скорость охлаждения, можно наблюдать различные Те при постоянной температуре механического стеклования, если задана частота внешнего воздействия. Например, эластомер НК (натуральный каучук) при медленном охлаждении со скоростью т= 1 К/мин стеклуется при температуре — 200 К. Выше этой температуры структура полимера является равновесной, что соответствует жидкому состоянию. Подвергая НК выше этой температуры механическим воз- [c.46]


    При замерах готовых изделий наблюдались значительные колебания величин усадок для деталей, изготовленных в одинаковых условиях. С увеличением диаметра изделий колебание границ усадки увеличивается. Эти колебания определяются незначительными отклонениями в технО логическом режиме изготовления изделий (усадка зависит от молекулярного веса полимера, от величины давления прессования, скорости охлаждения и других факторов).  [c.58]

    Осторожно В результате адгезии полимера на стенках и усадки в процессе кристаллизации пробирка может лопнуть. Для безопасности при охлаждении пробирки следует надевать кожаные перчатки, обертывать ее полотенцем и держать за ограждением. Если пробирка сама не трескается, ее завертывают в полотенце и измельчают молотком, после чего удаляют осколки стекла. [c.108]

    Политетрафторэтилен — линейный полимер молекулярной массой до 10000000, содержащий около 90% кристаллической фазы. При нагревании до 327 С кристаллическая фаза плавится и полимер переходит в аморфное состояние. При охлаждении он снова кристаллизуется. Кристаллизация сопровождается значительной усадкой и повышением плотности полимера с 1830 до 2240 кг/м  [c.116]

    При охлаждении расплава в форме в нем происходят структурные изменения, определяющие физико-механические свойства изделия. Кристаллизующиеся полимеры в некоторой степени восстанавливают кристаллическую структуру, что сопровождается значительной усадкой изделий. Скорость и степень охлаждения материала в поверхностных слоях, соприкасающихся с холодными стенками формы, и внутренних неодинаковы. В результате этого в изделиях создаются усадочные (термические) внутренние напряжения. [c.283]

    Развитие литьевых машин не остановилось на червячной пластикации. Постепенно эти машины усовершенствовались последним достижением в этой области явились машины для литья при низком давлении или автогенные литьевые автоматы (Flow molding, Fliessgiessen). Принцип их действия заключается в том, что перерабатываемый материал при вращении червяка расплавляется за счет комбинированного воздействия гидравлического давления и высоких скоростей сдвига. Тотчас же по достижении необходимой текучести и температуры при движении червяка по направлению к бункеру открывается литьевое сопло с запорным краном. Червяк начинает заполнять форму пластицированным полимером под постоянным давлением, поддерживаемым гидравлическим цилиндром. Таким образом обеспечивается постоянная температура расплава. После заливки формы червяк отходит в заднее положение, которое устанавливается с таким расчетом, чтобы избытка расплава хватило как раз для компенсации усадки, происходящей из-за охлаждения пластика в форме. В этом положении вращение червяка прекращается, и одновременно он переключается на выдержку под давлением, так что червяк производит подпитку формы подобно поршню. После полного охлаждения производят разъем формы и извлечение готовой отливки. Основным достоинством подобных машин является легкость регулирования температуры материала с помощью внутреннего сдвига и гидравлического давления. Оба фактора обеспечивают сравнительно надежное управление процессом пластикации без опасения термической деструкции полимера при заполнении форм. [c.220]

    Аэрогели, полученные из растворов различных концентраций, резко различаются по плотности, механической прочности величине усадки, выражающей относительное уменьшение объема исходного раствора при сублимировании растворителя. С увеличением концентрации исходных растворов увеличиваются плотность и механическая прочность образцов и уменьшается усадка, но вместе с тем при высоких концентрациях, как мы видели, снижается и удельная поверхность аэрогеля в связи с укрупнением первичных агрегатов макромолекул, образующих скелет аэрогеля. При очень низких концентрациях полимера в исходном растворе происходит сжатие каркаса аэрогеля вследствие теплового движения. Опыты по получению аэрогелей высококристаллических полиэтилена и полипропилена показали, что для полипропилена, растворенного при температуре 190° в бензоле, охлажденного при 0° и замороженного при температуре —78°, удельная поверхность имеет величину порядка 25 ж /г. [c.616]

    Другим, хотя и менее существенным фактором, является способность формы расширяться под действием температуры и внутреннего давления. Наиболее важным фактором является подпрессовка материала в форме по мере охлаждения давлением, развиваемым плунжером. Такая подпрессовка, или сжатие, способствует уменьшению различий в объемах материала при температуре литья и при комнатной температуре. Повышенная усадка полиэтилена связана с кристалличностью этого полимера. При замерзании происходит наибольшее изменение объема, вследствие уплотнения молекул, образующих кристалл. [c.144]

    Для компенсации температурной усадки форму заполняют под высоким давлением. Поэтому в начале процесса охлаждения полимер в форме находится в состоянии объемного сжатия. По мере охлаждения величина объемного сжатия уменьшается, оставаясь тем не менее отличной от нуля. При этом существенно снижается величина усадки и улучшается качество литых изделий. [c.419]

    Охлаждение расплава начинается уже в начале цикча литья (за исключением случая с обогреваемым распределителем), поскольку форма имеет примерно комнатную температуру. При заполнении формы температура расплава снижается как в направлении течения расплава, так и в поперечном направлении. Образуется пристенный слой затвердевшего полимера, средняя толщина которого уменьшается при повышении температуры поступающего в форму расплава и при увеличении скорости впрыска. В конце стадии заполнения формы охлаждение становится доминирующим процессом. Для компенсации уменьшения удельного объема полимера, вызванного охлаждением, приходится слегка подпитывать форму. Если снять давление до момента застывания расплава во впуске (или при отсутствии обратного клапана), то вследствие высокого давления внутри полости формы может начаться обратное течение расплава. И, наконец, в процессе охлаждения происходит слабое вторичное течение, приводящее к заметной молекулярной ориентации. Это течение вызвано наличием градиента температуры и перетеканием расплава из горячих зон в холодные, компенсирующим объемную усадку при охлаждении. Такие вторичные потоки следует ожидать в местах резкого уменьшения поперечного сечения полости формы. Если вторичное течение невозможно (обычно из-за нехватки материала), то в блоке литьевого изделия образуются пустоты. Во избежание образования пустот необходимо, чтобы масса вводимого в форму полимера превышала или была равна произведению объема внутренней полости формы на плотность полимера при комнатной температуре. [c.537]

    Как видно из рисунка, не наблюдается линейной зависимост ТКР от 02, т, е. наполнитель активно препятствует деформацн связующего. Степень отклонения от линейности зависит о структуры и фор.мы частиц наполнителя. К сожалению, в лите ратуре сравнительно мало результатов систематического иссле дования изменений объема эпоксидных композитов и полимеров в ходе отверждения, охлаждения и термообработки, поэтому для количественного рассмотрения этого вопроса приходится использовать приведенные выше данные о ТКР и эмпирические выражения, полученные для описания зависимости ТКР от со-дернония наполнителей. В литературе предложен ряд выражений, полученных для полимеров, наполненных сферическими частицами. При дальнейшем рассмотрении следует иметь в виду, что под а в приведенных ниже формулах подразумевается как объемный, так и линейный ТКР ( об = За лнн), я также усадка полимера, выраженная в объемных долях. Все эти выражения получены исходя из упругого поведения полимера и наполнителя без учета особенностей вязкоупругого поведения [c.94]

    Полимеры могут находиться в аморфном, частично-кристаллическом или высококристаллическом состоянии. Твердые аморфные полимеры находятся обычно в стеклообразном состоянии, которое характеризуется отсутствием дальнего порядка в расположении макромолекул, т. е. отсутствием кристаллических областей. При охлаждении полимерного расплава может сохраниться определенная ориентация макромолекул в потоке ( замороженные состояния ). Ориентация молекулярного клубка может возникать и тогда, копда полимер уже находится в твердом состоянии это достигается, например воздействием растягивающих сил. Наконец, подобные ориентации могут возникать при получении пленок из раствора, например при высушивании пленок (усадка) или при снятии их с подложки. Эти ориентации вызывают анизотропию различных физических свойств, которая отсутствует в полимере, [c.32]

    Большая часть полимера ристаллична. При нагревании до 327°С кристаллическая фаза расплавляется и полимер переходит в аморфное состояние. При охлаждении происходит усадка полимера — плотность его повышается с 1,83 до 2,3 г/см . Соотношение кристаллической и аморфной фаз зависит от скорости охлаждения. Медленное охлаждение приводит к повышенной кристалличности. Практически закалку осуш,ествляют охлаждением нагретого до 350—380 °С полимера в холодной воде. [c.331]

    Термическое расширение полимеров следует учитывать при получении покрытий из расплавов. В результате охлаждения расплава происходит значительная усадка полимера. Поскольку полимер находится в фиксированном состоянии на жесткой подложке, а релаксационные процессы в засте-клованной или закристаллизованной пленке заторможены, усадка приводит к возникновению внутренних напряжений, которые тем больше, чем выше разница в коэффициентах термического расширения материалов пленки и подложки. Величина внутренних напряжений зависит также от модуля упругости полимера и степени его изменения с температурой. [c.19]

    Полипропилен перерабатывают в изделия стержневым прессованием, литьем под давлением, выдуванием, прессованием. Формование производят при 190—220 и 700—1200 кз/сж в случае изготовления изделий литьем под давлением. Для прессования листов или блоков можно применять давление 100—120 кг1см . Отдельные детали из полипропилена сваривают между собой при 200—220. Средняя объемная усадка полипропилена в процессе формования изделий составляет 1—2% для полиэтилена высокого и низкого давлений она колеблется от 3 до 5°/д, для полистирола 0,3—0,5%. Листовой полипропилен применяют как антикоррозийный облицовочный материал для защиты металла от действия растворов щелочей и кислот. Пленки из полипропилена готовят методом раздувки трубы, получаемой стержневым прессованием. Пленки наиболее высокого качества получают нагревом полимера до 190—250 . Отформованную пленку следует быстро охладить водой до 20—25, это предупреждает образование кру1Пных кристаллитных участков, позволяет сохранить прозрачность пленки и повышает ее эластичность. Охлажденную пленку рекомендуется подвергнуть растяжению. При растяжении происходит ориентация в расположении кристаллов и прочность пленки па растяжение в направлении 0 риентации возрастает до 1200—1600 кг/см вместо 300—400 кг/смР для неориентированной пленки. Газо- и паропроницаемость пленок из полипропилена ниже газо- и паро-проницаемости пленок из полиэтилена (табл. XII.10). [c.789]

    Многие виды брака изделий из пластмасс получаются из-за усадки при охлаждении после формования. Очень важно знать усадочные свойства пластмасс и учитывать их при онструировании изделий и оформляющего инструмента, так как точность выдерживания заданных размеров формуемых изделий определяется главным образом усадочными свойствами полимера. На качестве изделий отражаются также стыки потоков расплава, образующиеся в процессе формования. В местах стыков снижается прочность материала, а на поверхности изделия иногда остаются заметные следы. Ниже будут рассмотрены эти явления. [c.74]

    Эта стадия цикла формования — вытекание полимера из формы под действием высокого давления в ней начинается при движении поршня назад к своему исходному положеник). Во время вытекания полимера давление в форме падает довольно быстро и скорость вытекания уменьшается, так как разность давлений в форме и в литнике становится меньше. Наконец скорость вытекания становится настолько низкой, что полимер охлаждается и затвердевает во впуске литника, т. е. полость формы отключается от литниковой системы, и вытекание полимера прекращается. Температура и давление в форме в момент отключения ее полости, как уже отмечалось, влияют на усадку полимера в форме, образование пустот и утяжин и т. п. Поэтому необходимо рассмотреть условия, при которых происходит отключение полости формы в процессе литья под давлением. Основное внимание при этом следует уделить охлаждению полимера во время его течения через относительно холодный канал. Для случая, когда охлаждение расплава не слишком велико, Спенсер и Гильмор дали следующее соотношение  [c.130]

    Вследствие симметричного строения макромолекул и малого размера атома фтора политетрафторэтилен имеет упорядоченную структуру. Степень кристалличности полимера достигает 80—90%. При нагревании до 327 °С кристаллическая фаза расплавляется, и полимер переходит в аморфное состояние. При охлаждении происходит усадка полимера — плотность его повышается с 1830 до 2300 кг/м . Соотношение кристаллической и аморфной фа зависит от скорости охлажлен.ия,. NU-членное охлаждение приводит к повышенной кристалличносгн. Практически закалку осуществляют охлаждением нагретого до 350— 380 °С полимера в холодной воде. [c.241]

    При деформации полимеров в расплаве молекулярные цепи стремятся ориентироваться в направлении действия силы, а среднее расстояние между концами молекулы увеличивается. Степень ориентации можно определить по величине угла двулучепреломления в потоке расплава (см. разд. 3.9). Другим методом определения молекулярной ориентации является измерение анизотропии усадки при отжиге тонких, быстро охлажденных образцов. Чтобы рассчитать степень молекулярной ориентации, которой подвергается полимерный расплав под воздействием поля напряжений, необходимо знать продолжительность действия напряжений и располагать адек- [c.68]

    Новый полимер в настоящее время вырабатывается на полузаводской установке фирмы Геркулес и выпускается под маркой пептон [92]. Особенность структуры этого нового полимера заключается в том, что хлорметиль-ные группы в нем связаны с атомом углерода, у которого нет незамещенных водородных атомов, поэтому исключается возможность образования хлористого водорода при повышенной температуре. Кроме того, через каждые три углеродных атома в цепи макромолекул пептона имеется атом кислорода. Это заметно повышает гибкость макромолекул, что внешне выражается в повышении эластичности полимера. Одпако это не ухудшает теплостойкости материала, не снижает его механической прочности и не придает ему хладотекучести, так как строго симметричная структура звеньев способствует кристаллизации полимера. Выше температуры плавления полимер приобретает высокую текучесть, позволяющую формовать из него изделия любой сложности. При охлаждении наблюдается сравнительно малая усадка пептона, что облегчает формование изделий строго заданных размеров. [c.800]

    Фторопласт-4 является высококристалличным полимером. Он представляет собой сплав твердых кристаллов с аморфными участками, находящимися в высокоэластическом состоянии. Соотношение кристаллических и аморфных участков определяется степенью закалки при охлаждении изделия. Наибольшая степень кристалличности фторопласта-4 достигается при температуре 315° С. Если изделие после спекания охлаждается медленно и длительное время выдерживается при температуре около 300° С, содержание кристаллов становится большим и твердость образца возрастает. Если быстро охладить изделие, то оно вследствие сохранения аморфной формы приобретает закалку и хрупкость его уменьшается. Усадка линейных размеров фторопласта-4 после таблетирования и спекания [25] составляет4—9%. Для получения изделий с точными размерами требуется дополнительная механическая обработка изделий. [c.34]

    Переработка полипропилена методом формования несколько затруднена вследствие присущей ему кристаллической структуры. Относительно резкий переход полимера из твердого состояния в жидкое требует поддериония температурного режима в узких интервалах [1]. Прп низкой температуре требуется применять высокие давления формования, а также затрудняется хорошее воспроизведение конфигурации формы, а при высокой — формуемый материал легко разрывается или деформируется и часто прилипает к модели или форме. Полипропилен характеризуется меньшей удельной теплоемкостью, чем линейный полиэтилен, поэтому его прогрев перед формованием и последующее охлаждение занимают на 15—20% меньше времени. На рис. 11.1 [2] показана зависимость температуры пленки от продолжительности нагревания. Температуру формования обычно поддерживают в пределах 165—175°С. Для прогрева заготовок чаще всего применяют излучающие электронагреватели мощностью 200—450 вт/дм . При формовании изделий из листов толщиной более 3 мм предварительный разогрев заготовок целесообразно осуществлять в сушилке при 110—140°С. Это дает возможность сократить продолжительность рабочего цикла и уменьшить усадку изделий [3], [c.278]

    В форме изделие из полииропилена охлаждают до 80° С во избежание дополнительной усадки и коробления. Охлаждение можно ускорить обдувкой изделия холодным воздухом или ВОДЯ ным туманом. В серийном производстве предпочтительнее приме-нять формы с водяным охлаждением. На изготовление листов и, следовательно, на формование идут экструзионные марки полимера, обладающие высокой ударной вязкостью. [c.279]

    Так же как и при литье металлов, конструкция формы для литья полиамидов должна быть тщательно продумана, особенно при изготовлении изделий с жесткими допусками на размеры. Допуски должнул учитывать усадку в форме, обусловленную отверждением полимера. Для ненаполненного поликапроамида линейная усадка составляет 3—4%. Должна быть предусмотрена возможность вентилирования формы. В конструкции формы должны отсутствовать резкие переходы по сечению, так как при этом возникает ряд трудностей, связанных, например, с тем, что при охлаждении отливки теплоотдача от поверхности более тонких стенок осуществляется быстрее, чем от толстых стенок. Если поперечное сечение изделия несимметрично, то из-за различия скоростей охлаждения может происходить коробление отливки или же могут возникать внутренние напряжения, которые не заметны сразу после литья, но приводят к деформации детали через некоторое время в процессе эксплуатации. [c.203]

    Эластичность при длительной эксштуатации и невысокие напряжения при усадке (которая должна быть минимальной) после удаггения из полимера растворителя или после охлаждения расплава. Для этой цели в полимеры вводят пластификаторы. [c.12]


Смотреть страницы где упоминается термин Усадка полимера при охлаждении: [c.192]    [c.93]    [c.132]    [c.134]    [c.377]    [c.98]    [c.176]    [c.142]    [c.124]    [c.14]    [c.117]    [c.69]    [c.405]   
Основы технологии переработки пластических масс (1983) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Усадка



© 2024 chem21.info Реклама на сайте