Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы ферромагнитные

    Разработаны методы определения структуры смесей и сплавов ферромагнитных металлов с неферромагнитными. С их помощью можно определять структурное состояние ряда промоторов (например меди в N1, Ре и Со). [c.183]

    Твердость 400 ед. по Виккерсу. Сплавы ферромагнитны. Коррозионная стойкость аналогична стойкости металлургических сплавов [c.235]


    Некоторые металлические наполнители придают полимерам специфические свойства, например порошки железа и его сплавы — ферромагнитные свойства чешуйки алюминия, никеля, серебра — низкую газе- и паропроницаемость порошки алюминия и медных сплавов—декоративность. Материалы, наполненные свинцом, кадмием и вольфрамом, пригодны в качестве защиты от излучений высокой энергии [32]. Порошки меди [33] улучшают фрикционные характеристики композиционного материала (рис. П.З). [c.63]

    При фазовых переходах второго рода непрерывно изменяются и первые производные от энергии Гиббса по температуре и давлению, т. е. энтропия и объем. Для фазового перехода второго рода невозможно существование метастабильных состояний, и каждая фаза может существовать только в определенной температурной области. Пр)имерами фазовых переходов второго рода являются переходы жидкого гелия в сверхтекучее состояние, железа из ферромагнитного в парамагнитное состояние, металла из обычного в сверхпроводящее состояние, переход порядок — беспорядок в сплавах типа -латуни и др. [c.326]

    Ферромагнитными называются вещества, способные сильно намагничиваться даже в слабых магнитных полях. К ним относятся железо, никель, кобальт, некоторые сплавы. Ферромагнетизмом называют совокупность магнитных свойств, характерных для этих веществ. [c.153]

    Рабочая частота генератора, которую выражают в мегагерцах, определяется напряженностью поля магнита Яо и типом исследуемых ядер. Чем больше рабочая частота, тем выше чувствительность и разрешающая способность прибора. Большинство из выпускаемых в настоящее время серийных спектрометров высокого разрешения, предназначенных для исследования на протонах, работают на частотах 60, 80, 90 и 100 МГц, которым соответствуют магнитные поля приблизительно 1,1—2,0 10 А/м. Это уже близко к пределу, обусловленному особенностями электронного строения ферромагнитных сплавов, используемых для изготовления сердечников электромагнитов. Применение сверхпроводящих соленоидов, создающих магнитное поле Яц более 4 10 А/м, дало возможность довести рабочую частоту ЯМР-спектрометров до 500 МГц. [c.39]

    Химические свойства. В сплавленном виде марганец вполне устойчив при обычных условиях, так как покрывается оксидной пленкой, предохраняющей его от дальнейшего окисления. В мелкораздробленном виде он легко окисляется на воздухе. С алюминием, сурьмой, медью и некоторыми другими металлами образует ферромагнитные сплавы. [c.337]


    Рассмотрим кристаллическую решетку, в которой для каждого узла существуют два способа, две возможности быть занятыми. Два рода возможных состояний обозначим А и В. В случае бинарного сплава или твердого раствора символы А и В будут относиться к атомам (молекулам) разного сорта. В модели ферромагнитного вещества два рода состояний — это атомы данного металла (например, железа) с различной ориентацией электронного спина допустим, А — атом железа с положительной ориентацией спина, В — атом железа с отрицательной ориентацией спина. Вообще говоря, в узлах металлической решетки находятся положительные ионы, но для той модели, которая будет рассматриваться, это несущественно. Для простоты частицы А и В, находящиеся в узлах решетки, будем далее называть всегда атомами. Оговорим, однако, что А и В не могут быть ионами разного знака случай ионного кристалла АВ из рассмотрения исключается. [c.337]

    К числу ферромагнетиков относятся железо, никель, кобальт, редкоземельные металлы от гадолиния до тулия, их соединения, сплавы, а также сплавы хрома и марганца и др. Особенностью ферромагнитных веществ является большое значение [х, а также то, что они сохраняют намагничивание и после того, как намагничивающее поле прекратило свое действие магнитная проницаемость (X и коэффициент % для них не являются постоянными [c.288]

    Основная область применения лантанидов — металлургия, где они используются как добавки к различным сплавам. Оксиды этих элементов применяются в качестве катализаторов, входят в состав многих лазерных и ферромагнитных материалов, широко используются в оптической промышленности, в производстве специальных сортов стекол. В последние годы они нашли применение в качестве важных компонентов керамических сверхпроводящих материалов, твердотельных лазеров непрерывного излучения, входят в состав некоторых катализаторов крекинга нефти, используются в атомной энергетике. [c.439]

    Покрытие Со — Мо — Р Для осаждения Со — Мо — Р-пленок применялся раствор, содержащий (г/л) хлористый кобальт 25—30. молибденовокислый аммоний 0 005—0,01, лимоннокислый натрий 80—100 гипофосфит натрия 15—20 хлористый аммоний 40— 50 аммиак (25 % ный) до pH 9—9 5 температура 90 °С Этот сплав рекомендуется использовать как ферромагнитный материал [c.73]

    Сейчас при контроле механических свойств материалов для испытаний на растяжение, сжатие, изгиб, скручивание, длительную прочность, ползучесть, релаксацию напряжений применяют громоздкое и дорогое механическое оборудование. Пределы прочности, текучести, упругости, относительного удлинения, ударной вязкости определяют на образцах выборочным путем. Но даже у материалов одной марки, плавки, партии механические характеристики могут разниться. Выход подсказывает применение магнитных коэрцитиметров, позволяющих оценивать качество термообработки, твердость и другие механические параметры через коэрцитивную силу ферромагнитного материала. Так проверяется качество углеродистых сталей и других содержащих железо сплавов после термообработки. [c.60]

    Железо, кобальт и никель — ферромагнитные металлы. Ферромагнетизм железа соответствует наличию в металле 2,2 электрона с неспаренными спинами В расчете на один атом. Сплавы железа с небольшим количеством кобальта обладают более сильным ферромагнетизмом, чем чистое железо. Ферромагнетизм возрастает до максимального значения при содержании в сплаве примерно 28% кобальта, а затем уменьшается и достигает значения, отвечающего наличию 1,7 неспаренного электрона на один атом чистого кобальта. [c.497]

    Металлический кобальт—серебристо-белый металл со слабым красноватым оттенком. Он менее активен, чем железо, и из разбавленных кислот медленно вытесняет водород. Кобальт применяют при изготовлении специальных сплавов, в том числе сплава алнико (сплав алюминия, никеля, кобальта и железа с сильными ферромагнитными свойствами), применяемого для изготовления постоянных магнитов. [c.554]

    Изучая в начале данного курса строение атомов различных элементов, мы сосредоточивали внимание на свойствах отдельных, изолированных атомов — их электронной структуре, энергии ионизации, атомных и ионных радиусах и т. п. Попытаемся теперь разобраться в особенностях строения и свойств больших групп атомов, расположенных в непосредственной близости друг к другу. Известно, например, что магнитная восприимчивость изолированного атома или иона определяется наличием в его электронной оболочке неспаренных электронов (см. гл. 5). Однако й том случае, когда поблизости друг от друга находится большая совокупность атомов, как это имеет место в твердых металлах, взаимодействие между атомами способно существенно изменить их важнейшие свойства. При наличии в кристаллической решетке железа достаточно большого числа атомов этот металл приобретает ферромагнитные свойства, которыми не обладают ни соединения железа, ни растворы, содержащие его ионы. Учитывая эту особенность твердых веществ, обусловленную взаимодействием их атомов, рассмотрим расположение атомов в кристаллической решетке твердых металлов и познакомимся с теорией взаимодействия их электронов. Кроме того, в данной главе мы обсудим еще строение и свойства сплавов, так как они довольно близки в этом отношении к чистым металлам. [c.387]


    Критические явления наблюдаются также для жидких растворов, биополимеров, жидких кристаллов, сплавов, сверхпроводников и ферромагнитных металлов. [c.92]

    Металлы — железо, кобальт, никель, гадолиний, диспрозий и некоторые из их сплавов и соединений являются ферромагнитными при температуре ниже критической для каждого соединения. Причина ферромагнетизма до объяснения ее квантовой механикой была неизвестна. Вопрос заключается в том, почему электроны на неполностью заполненных оболочках выстраиваются в направлении приложенного поля и почему они сохраняют эту ориентацию даже после снятия магнитного поля Объясняется это тем, что низшим энергетическим состоянием для некоторых твердых тел является состояние, в котором спины электронов параллельны, а не антипараллельны, как, например, для двух электронов в молекуле водорода. Ферромагнетизм возможен только при определенных межатомных расстояниях и определенных радиусах -орбиталей, поэтому он наблюдается лишь для некоторых элементов. Ферромагнитные вещества проявляют гистерезис в магнитных свойствах. Это означает, что магнитный момент зависит от магнитной предыстории образца кривые зависимости магнитного момента от напряженности магнитного поля различны для случаев, когда магнитное поле увеличивается или уменьшается. [c.497]

    Сурьма — один из давно известных и довольно часто используемых элементов. Она входит в состав многих сплавов цветных металлов, типографских шрифтов, подшипниковых сплавов. Сурьма и ее соединения используются в резиновой, красильной, спичечной, стекольной, фармацевтической, аккумуляторной, приборостроительной и в ряде других отраслей промышленного производства. Сурьма применяется при изготовлении солнечных батарей, инфракрасных детекторов, ферромагнитных приборов, огнестойких соединений, сурьмяных электродов для рН-метров. Особенно важной областью потребления сурьмы является полупроводниковая промышленность. В ряде случаев требуется сурьма очень высокой чистоты. В то же время содержание сурьмы в земной коре очень мало и не превышает 4-10 %. В связи с этим аналитическая химия сурьмы характеризуется очень большим разнообразием методов ее отделения и определения, широким диапазоном определяемых концентраций и большим разнообразием анализируемых материалов. Особенно быстро аналитическая химия сурьмы развивалась за последние 25 лет в связи с прогрессом полупроводниковой промышленности. За это время возник и успешно развивался ряд новых разделов аналитической химии сурьмы, в том числе такие, как аналитическая химия сурьмы высокой чистоты и ее соединений, методы определения очень малых количеств сурьмы в различных материалах и т. п. [c.5]

    Нек-рые металлич. наполнители придают полимерам специфич. свойства, наир, порошки железа и его сплавов — ферромагнитные свойства, чешу11ки алюминия, никеля, серебра и др.— низкую газо- и паропроницае-мость, порошки алюминия и медных сплавов — декоративность. М. п. на основе тонкодисперсных порошков платины, палладия, родия, иридия и железа обладают способностью катализировать реакции гидрирования и часто превосходят по каталитич. активности металлич. порошки. Материалы, наполненные свинцом, кадмием и вольфрамом, пригодны в качестве защиты от излучений высокой энергии. [c.99]

    Итак, под действием сил обменного взаимодействия даже при отсутствии внепшего магнитного поля спиновые магнитные моменты атомов ферромагнитного вещеспъа выстраиваются в одном направлении. Направление самопроизвольной намагниченности определяется строением кристаллической решетки ферромагнитного материала или сплава. [c.24]

    В твердых растворах на базе ферромагнитных металлов наблюдается понижение намагниченности насьпцения, если растворен диамагнитный металл. В растворах парамагнитных и ферромагнитных примесей в ферромагнетике имеют место более сложные зависимости. В общем случае введение парамагнитных и диамагнитных примесей понижает М . Спонтанная намагниченность ферромагнитных растворов изменяется вместе с атомным упорядочением на близких расстояниях. Намагниченность насыщения не во всех сплавах возрастает с упорядочением. Считается, что причиной изменения М5 при упорядочении являются увеличение расстояний между одноименными атомами, изменение характера связи (обмен з-<1-электронов), или то и другое одновременно. [c.55]

    Структурно чувствительньте свойства гетерогенных сплавов зависят от величины и фадиента напряжений, дисперс ности фаз, изолированности ферромагнитных кристаллов и других факторорассмотренных вьпне. [c.56]

    Портативный дефектоскоп ВД-89Н, изображенный на рисунке 3. 4.18, применяется для дефектоскопии металлоконструкций в процессе эксплуатации, позволяет контролировать изделия сложной формы из ферромагнитных и не-магаитных материалов и сплавов, имеющих отливы, галгельные переходы и т. п. Минимальные размеры выявляемых дефектов, мм глубина - 0,2 протяженность - 5 (разработчик МНПО "Спектр). [c.177]

    Металлоуглеродные волокна, содержащие ферромагнитные металлы и их сплавы обладают высокой удельной намагниченностью. При формировании в магнитном поле композитов, наполненных магнитными электропроводящими Ме-УВ, происходит ориентация волокнистого наполнителя с образованием цепочечных электропроводящих структур, обеспечивающих анизотропию электрических и магнитных свойств композитов. На основе таких материалов разработаны эффективные экраны и поглотители электромагнитных волн. [c.182]

    Ферромагнитными свойствами обладают не только металлы и сплавы, но и некоторые другие соединения. В частности, ферромагнитными свойствами обладают магнетит Рез04 и магемит у-РеаОз, а также парамагнитный гематит а-РегОз. Магнетохими-ческое изучение этих соединений позволило установить, что маг- [c.201]

    К простым веществам, проявляющим ферромагнитные свойства при комнатной температуре, относятся а -элементы VHI группы 4 периода — железо, кобальт и никель. Ферромагнитны и многие сплавы на их основе, а также некоторые оксиды, нитриды и другие соединения, например Рез04, СгОа, Мп4М, СгТе, [c.194]

    Полупроводники — это обширный класс веществ. Полупроводниковыми свойствами обладают простые вещества В, С (в виде графита), 5), Ое, 5п (а-модификация), Р, Аз, 5Ь, 5, 5е, Те, I. К полупроводникам относятся оксиды и сульфиды переходных металлов и некоторых /5-элементов многие двойные (В1 — Сс1), тройные (В1 — Рс1—5п), четверные (В1—5п—Сё—Рс1) и другие сплавы и их твердые растворы ферромагнитные полупроводники, имеющие кристаллические решетки типа минерала шпинель (MgAl204) и т. п. [c.140]

    Ферромагнитные вещества. Известны парамагнитные вещества, обладающие постоянной намагниченностью даже в отсутствие внешнего магнитного поля. Подобные вещества называются ферромагнитными. До недавнего времени ассортимент таких веществ был весьма невелик и ограничивался лишь железом, кобальтом, никелем, гадолиние.м, диспрозием, а также сплавами на их основе. В настоящее время к данным металлам добавилась большая группа неметаллических ферромагнетиков с высоким электросопротивлением, применяемых, в частности, в вычислительной технике. [c.302]

    Большой интерес представляют редкоземельные ферриты (гранаты), сочетающие полупроводниковые, диэлектрические и ферромагнитные свойства (микроволновые передатчики, резонаторы и т. д.). Особое внимание уделяется иттриево-железным гранатам типа ЗУзОз- бРе Оз, являющимся ценным материалом для магнитных сердечников в микроволновой и телевизионной аппаратуре [23]. Алюмо-иттрие-вые гранаты имитируют бриллианты [3]. Разнообразие магнитных свойств редкоземельных металлов и их сплавов представляет несомненный интерес с точки зрения использования их в электронике [2]. Окислы тяжелых РЗЭ применяются в запоминающих устройствах электронно-вычислительных машин [3]. Большое значение РЗЭ приобретают как полупроводниковые материалы. Принципиально возможно получить большое число соединений РЗЭ с 5е, Те, 5, 5Ь, В и др., имеющих широкий набор полупроводниковых свойств [13, 2]. [c.89]

    В соединениях они обычно проявляют степени окисления +2 и +3. С этими степенями окисления они образуют оксиды ЭО и Э2О3, которым соответствуют гидроксиды Э(ОН)г и Э(ОН)з. Все эти металлы имеют большую прочность, пластичность, ковкость. Все они ферромагнитны. Железо, кобальт, никель и особенно их сплавы являются важнейшими материалами для современной техники. [c.305]

    Блестящий, серебристо-голубой, твердый металл обладает ферромагнитными свойствами. Устойчив на воздухе медленно В2 аимодейстнуе г с разбавленными кислотами. Со используется в качест)е радионуклидной метки. Применяется для получения магнитных сплавов, керамики, катализаторов и художественных красок. [c.88]

    Образцы аустенитных сталей, в которых процентное содержание б-феррита определено методом магнитного насыщения, могут быть использованы в качестве эталонов для калибровки ферритометров всех типов. В качестве эталонов могут быть также использованы и спресованные порошковые образцы, однако их ферромагнитная составляющая должна быть не из порошка железа, а из порошка сплава, имеющего состав б-феррита, например для сталей типа 12Х18Н10Т сплав Х23Н5. В качестве парамагнитной составляющей в спрессованных образцах-эталонах должен быть использован не медный порошок, как это делается в заводской практике, а возможно более мелкий порошок аустенитной стали. Это необходимо для того, чтобы при градуировке ферритометров, работающих на переменном токе, особенно при повышенных частотах, электропроводности эталона и исследуемого образца были близкими. Такие спресованные порошковые образцы-эталоны могут быть использованы для калибровки ферритометров всех типов. Из опыта следует, что для построения градуировочного графика к феррито- [c.149]

    Способность М. к взаимному растворению с образованием при кристаллизации твердых растворов и интерметаллидов, разнообразным фазовым превращениям дает возможность получения большого числа сплавов, отличающихся разл. структурой и самыми разнообразными сочетаниями св-в. В совр. технике применяют св. 30 ООО разл. сплавов-легкоплавких и тугоплавких, очень твердых и пластичньк, с большой и малой электрич. проводимостью, ферромагнитных и др. В сплавах ныне используют практически все известные М. (кроме искусственно полученных трансплутониевых элементов). Мера использования в значит. степени определяется доступностью М.-содержанием в земной коре, а также степенью концентрирования в месторождениях и трудностью получения. Использование сплавов (бронзовый век) было одним из важнейших этапов становления человеческой цивилизации. И в настоящее время сплавы-важнейшие конструкционные материалы. В последние [c.54]

    НЙКЕЛЯ СПЛАВЫ, обладают высокой мех. прочностью, коррозионностойкостью, жаростойкостью, жаропрочностью, ферромагнитными и др. особыми физ. св-вамя. [c.245]

    При Ф. п. П рода сама величина О и первые производные С по Т, р и др, параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость, коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не вьщеляется и не поглощается, явления гистерезиса и метастабильные состояния отсутствуют. К Ф. п. П рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупорядоченное (ферро- и ферримагнитное в Кюри точке, анти-ферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв, во всей решетке или в каждой из магн, подрешеток) переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах) переход смектич, жидких кристаллов в нематич. фaзyi сопровождающийся аномальным ростом теплоемкости, а также переходы меяоду разл. смектич. фазами .-переход в Не, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий)-, переход металлов в сверхпроводящее состояние в отсутствие магн. поля. [c.55]

    Исторически первые коммерческие спектрометры в начале 50-х годов были снабжены электромагнитами с напряженностью поля 1,0 Т и генератором радиочастоты на 40 МГц для наблюдения ЯМР Н. Позже стали доступными приборы с рабочей частотой 60 МГц (Во= 1,4 Т), и к середине 60-х годов стандартным исследовательским спектрометром ЯМР стал прибор с рабочей частотой 100 МГц и напряженностью поля 2,3 Т. Этим был достигнут предел для традиционных электромагнитов, поскольку невозможно получить более высокую степень намагниченности с обычными ферромагнитными материалами. Для получения более мощных магнитных полей следовало применить совершенно новый принцип, что и привело к разработке Магнитов со сверхпроводяш,ими соленоидами. При этом используется свойство некоторых металлов, таких, как ниобий и цирконий, и сплавов полностью терять электрическое сопротивление при 4 К, т. е. при температуре жидкого гелия. Это дает возможность значительно повысить силу тока в таких системах. [c.301]

    В последующих главах нам придется иметь дело с удельной теплоемкостью ферромагнитных тел или электропроводностью сплавов в теории этих явлений указанные системы рассматриваются как равновесные, хотя их состояние и не является вполне разупорядочепным. При некотором [c.72]


Смотреть страницы где упоминается термин Сплавы ферромагнитные: [c.420]    [c.79]    [c.243]    [c.23]    [c.56]    [c.174]    [c.13]    [c.129]    [c.506]    [c.246]   
Курс неорганической химии (1963) -- [ c.343 ]

Курс неорганической химии (1972) -- [ c.307 ]




ПОИСК







© 2024 chem21.info Реклама на сайте