Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерного магнитного резонанса область применения

    Ядерный магнитный резонанс. Все рассмотренные нами до сих пор методы атомного и молекулярного спектрального анализа относились к оптическим областям спектра. Но оказалось, что и в радиоволновой области в определенных условиях можно получать ценные сведения о структуре химических, особенно органических, соединений. Метод ядерного магнитного резонанса, первые практические применения которого имеют всего 10 — 15-летнюю давность, стал в настоящее время одним из основных методов установления структуры органических соединений. Одновременно быстро увеличивается круг его применения для целей качественного и количественного анализа, особенно в случае сложных задач, когда применение других методов мало эффективно. Уже в настоящее время в ряде производств сложных органических соединений в химико-фармацевтической промышленности и производстве красителей для цветных фотоматериалов ход производства и качество готовой продукции контролируется методом ядерного магнитного резонанса. Несомненно, что и в ближайшем будущем применение этого метода в аналитических целях будет стремительно расти. [c.342]


    Явление ядерного магнитного резонанса (ЯМР), открытое в 1945 г. Ф. Блохом и Э. Перселлом, ныне лауреатами Нобелевской премии, легло в основу создания нового вида спектроскопии, который в очень короткий срок превратился в один нз самых информативных методов исследования молекулярной структуры и динамики молекул, межмолекулярных взаимодействий, механизмов химических реакций и количественного анализа веществ в различных агрегатных состояниях. Начиная с 1953 г., когда были выпущены первые спектрометры ЯМР, техника ЯМР непрерывно совершенствуется, лавинообразно нарастает поток исследований, возникают новые и расширяются традиционные области применения в химии, физике, биологии и медицине. В соответствии с этим быстро расширяется круг специалистов, активно стремящихся овладеть этим методом. [c.5]

    Еще одна область возможных применений спектроскопии ядерного магнитного резонанса основана на том, что спектры ЯМР многих соединений зависят от температуры. С таким случаем мы сталкиваемся при изучении спектра диметилформамида. При 40°С в нем наблюдается дублетный резонансный сигнал от протонов метильных групп, а при 160°С в спектре виден только синглет (рис. 3). Причина этих различий в спектрах при двух температурах — высокий барьер вращения вокруг связи карбонильный атом углерода — азот (87,8 кДж/моль), которая обладает частично двойным характером, что можно представить резонансной формой а. Поэтому две метильные [c.13]

    Монография посвящается применению спектроскопии ядерного магнитного резонанса в неорганической химии. Излагаются основы метода ЯМР и области его применения, главным образом для установления структуры химических соединений. Описывается методика анализа спектров ЯМР и оценки полученных результатов. Особенно подробно приводятся результаты, относящиеся к соединениям, содержащим водород, бор, фтор и фосфор. Данные для всех исследованных неорганических соединений собраны в таблицы, содержащие величины химических сдвигов и константы спин-спинового взаимодействия, благодаря чему книга может служить справочником. [c.303]

    В гл. II мы ввели простые правила, которые позволяют непосредственно определить химические сдвиги и константы спин-спинового взаимодействия по форме мультиплетов, наблюдающихся в спектрах ядерного магнитного резонанса. Уже отмечалось, что ати правила имеют ограниченную область применения, так как они описывают частные случаи на основе общей теории анализа спектров ЯМР при использовании ряда упрощающих предположений. Таким образом, необходимо рассмотреть полный формализм, и в этой главе мы детально разовьем общий подход к анализу спектров ЯМР. Во-первых, мы попытаемся изложить важнейшие принципы далее мы рассмотрим индивидуальные типы спектров и в конце главы дадим ряд важных обобщений. Однако при этом мы ограничимся рассмотрением наиболее часто встречающихся спиновых систем, поскольку исчерпывающий анализ вопроса лежит вне рамок учебника. [c.142]


    Параметрические радиоволновые методы дают возможность обнаруживать лишь довольно грубые неоднородности (дефекты), такие, как, например, металлические включения в диэлектрике, и вследствие этого имеют ограниченную область применения, исключение составляют дефектоскопы, построенные на принципах ядерных магнитных резонансов. [c.153]

    Главной областью применения спектроскопии ядерного магнитного резонанса [c.200]

    Главной областью применения спектроскопии ЯМР является определение молекулярной структуры. Ядерный магнитный резонанс в основном используют в органической химии, поэтому наиболее распространена спектроскопия ЯМР на ядрах и В спектрах протонного магнитного резонанса (ПМР) [c.223]

    В некоторых случаях другие методы могут оказаться более экспрессными или более чувствительными. Например, ядерный магнитный резонанс (ЯМР) зачастую дает больше информации о строении молекул некоторых классов растворимых органических веществ без спектров сравнения или стандартов. Стандарты менее важны также в масс-спектрометрии, где объем исследуемого образца может быть и меньше, но вещество должно быть летучим, однако область применения метода порой уже, чем в случае ИК-спектроскопии. Газовая хроматография, масс-спектрометрия и ультрафиолетовая (УФ) спектроскопия имеют превосходную чувствительность к следовым количествам (естественно, в пределах их чувствительности). Кроме того, для некоторых веществ эти три метода способны давать и превосходные количественные результаты. Спектроскопия комбинационного рассеяния (КР) света может быть использована в аналитических целях аналогично ИК-спектроскопии, но чаще как дополняющий, а не конкурирующий метод [6]. Таким образом, ясно, что аналитик должен сознавать возможности и ограничения всех доступных методов. [c.13]

    Для исследования полимеров наибольшее применение нашли ИК-спектроскопия и ядерный магнитный резонанс. Метод ИК-спектроскопии основан на способности вещества излучать или поглощать электромагнитные волны в инфракрасной области спектра. [c.26]

    Передовые достижения в смежных областях науки быстро осваиваются и усовершенствуются в неразрушающем контроле. Например, лазерная техника, голография, ядерный магнитный резонанс используются в приборах и методах контроля, причем на основе оптической голографии развилась акустическая вычислительная голография. Микропроцессоры применяются для распознания образа дефекта, управления процессом контроля и т. д. Теория хрупкого разрушения является основой оценки допустимости дефектов. Математическая теория игр находит применение для выбора критериев оценки качества при отсутствии исчерпывающих данных о дефекте. [c.357]

    Сведения об изменении молекулярной подвижности в граничных слоях полимеров могут быть получены также с применением метода ядерного магнитного резонанса. Имеются многочисленные данные [230], показывающие, что исследования релаксационных процессов в полимерах, проведенные методами диэлектрической релаксации или ЯМР, дают в общем аналогичные результаты. В ряде наших работ на объектах, уже рассмотренных выше, была исследована спин-решеточная релаксация протонов в полимерах и олигомерах, находящихся на поверхностях частиц наполнителей [215—218]. Для примера рассмотрим данные о температурной зависимости времени спин-решеточной релаксации Г] для полистирола и образцов, содержащих аэросил и фторопласт-4 (рис. III.27). Наблюдаются две области релаксации — высокотемпературная и низкотемпературная. Для высокотемпературной области минимум Ti смещается в сторону высоких температур по мере уменьшения толщины поверхностного слоя, и сдвиг достигает 20 °С. В то же время низкотемпературный процесс смещается в сторону низких температур. Для ряда исследованных систем были установлены [c.129]

    Учебное пособие, в котором изложены принципы и практика применения трех основных спектроскопических методов, широко используемых в органической химии ядерного магнитного резонанса, ультрафиолетовой и инфракрасной спектроскопии. Большое достоинство данной книги состоит в том, что в ней рассматривается совместное применение всех трех спектроскопических методов для установления структуры органических соединений, чего нет ни в одной известной монографии в этой области. Приведены многочисленные примеры с подробным разъяснением спектров. [c.311]

    В 1950 г. начала быстро развиваться область применения ядерного магнитного резонанса (ЯМР) для решения разнообразных химических проблем. На основании выполненных исследований по ЯМР органических молекул можно предвидеть, что этот метод явится орудием исследования молекулярной структуры, соперничающим с ИК-спектроскопией. Зто предвидение уже оправдалось в случае Н-связи. Исследования ЯМР в системах с Н-связями распадаются на следующие направления. [c.126]

    Из других спектральных методов имеют универсальное применение инфракрасная спектрометрия и ядерный магнитный резонанс, в то время как ультрафиолетовая и рентгеновская спектрометрия и другие оптические методы носят характер методик, используемых в специальных областях. [c.255]


    Целью этой главы является рассмотрение областей применения пектров ядерного магнитного резонанса (ЯМР) для структурных ш стереохимических исследований природных соединений. Общая теория ЯМР и применяемая аппаратура подробно описываются в обзорах [70, 746, 81, 124] поэтому здесь эти вопросы будут затронуты только в самых общих чертах для того, чтобы ознакомить читателя с используемой терминологией. В соответствующих разделах читатель найдет более детальную теоретическую трактовку ряда специальных проблем. Здесь подробно изложены вопросы, касающиеся самих объектов исследования и анализа спектров, причем особое внимание обращено на эмпирическую корреляцию между данными ЯМР и молекулярной структурой, поскольку для химика-органика, работающего в области исследования природных соединений, метод ЯМР представляет собой по существу еще один спектроскопический метод, с помощью которого можно получить информацию о числе и пространственном расположении атомов некоторых элементов в сложных молекулах. [c.204]

    Применение метода ядерного магнитного резонанса основано на др. физич. свойстве, а именно на том, что при определенных темп-рах молекулярные движения в кристаллитах и аморфных областях различны и вследствие этого в спектре ЯМР возникают две линии — широкая, связанная с кристаллитами, и узкая, зависящая от молекулярных движений в аморфных участках. В отличие от рентгенографии кристалличность определяется здесь уже по различной молекулярной подвижности области с различным порядком — кристаллиты и аморфные участки — отличаются как бы своей высокочастотной жесткостью . [c.257]

    Цель данной книги — помочь химику-органику вступить в область, связанную с применением ядерного магнитного резонанса (ЯМР С), и предоставить ему информацию, достаточную для эффективного применения ЯМР на практике. Для достижения поставленной цели были использованы некоторые единые принципы изложения материала объяснены принципиальные различия между ЯМР и ЯМР Н, причем теоретическое описание довольно кратко и не содержит математических выкладок. Приведены спектры (среди них много неопубликованных) и рисунки, если только они помогают изложению принципиальных вопросов. [c.9]

    Мотивируя появление настоящей книги, Драго в своем предисловии к ней отмечает огромную роль физических методов в современной неорганической химии. На наш взгляд, в настоящее время в этом уже нет необходимости, поскольку важность физикохимических исследований для установления строения неорганических соединений и их свойств сейчас совершенно очевидна. Однако встает другой вопрос — какая именно книга по физическим методам в неорганической химии наиболее актуальна По большинству физических методов имеются монографии, предназначенные для специалистов, работающих в данной области (например, в области электронного парамагнитного или ядерного магнитного резонанса, колебательных спектров и т. п.), так что лица, посвятившие себя непосредственному применению и развитию таких методов, в какой-то мере обеспечены необходимой литературой. Но такие книги, как правило, довольно трудны, содержат много деталей, касающихся теории методов и проведения экспериментов, и велики по объему. Все это делает их мало доступными для другого круга читателей, в частности для химиков-неоргаников, главной целью которых является не непосредственное применение всех физических методов, а умелое использование уже готовых результатов, полученных такими методами. Для этого необходимо, не становясь профессионалом, представлять себе возможности каждого метода и его ограничения, а также уметь относиться критически к выводам, основанным на результатах подобных исследований. Именно на такого- читателя ориентирована книга Драго, и в этом, по нашему мнению, ее главное достоинство. [c.5]

    Хотя все изложение ведется на достаточно высоком научном уровне, оно построено таким образом, что от читателя требуется лишь минимальная предварительная подготовка в области теории ядерного магнитного резонанса. Благодаря этому книга может быть использована достаточно широким кругом химиков-органиков, ведущих структурные исследования с применением физикохимических методов. Вместе с тем наличие богатого фактического и методического материала делает книгу весьма ценной и для специалистов, работающих в области спектроскопии ядерного магнитного резонанса. [c.6]

    В настоящее время каждому ясно, что спектроскопия ядерного магнитного резонанса является для химиков-органиков одним из наиболее полезных физических методов. Ни одна современная лаборатория, в которой ведутся исследования в области органической химии, не может считаться полностью оборудованной, если в ней отсутствует спектрометр ЯМР. Статьи о применении ЯМР в органической химии появляются почти ежедневно, и, несомненно, популярность метода будет в дальнейшем возрастать. [c.7]

    Зависимость температуры стеклования, характеризующей гибкость и подвижность кинетических элементов только в аморфной фазе, от степени кристалличности и ориентации представляет большой интерес. При изучении влияния кристаллизации полиэтилентерефталата на его диэлектрические потери, было отмечено, что кристаллизация приводит к уменьшению подвижности сегментов в аморфной фазе [36]. Применение метода ядерного магнитного резонанса позволило установить [44], что интенсивность движения в аморфных областях полимера уменьшается с увеличением степени кристалличности. Подвижность частей молекул, расположенных в аморфных областях, ограничена за счет того, что другие их части входят в состав кристаллических областей. Другой причиной снижения подвижности макромолекул в аморфной фазе, по-видимому, является напряжение. Херви экспериментально установил [45], что температура стеклования увеличивается при повышении напряжения при растягивании полиэфирного волокна. [c.111]

    При написании книги, рассматривающей одну из специальных областей применения спектроскопии ядерного магнитного резонанса (ЯМР), следовало предполагать, что читатель знаком с основами явления. Однако уместно кратко напомнить некоторые основные положения этого метода, поскольку еще не все химики-органики используют ЯМР в повседневной практике. [c.11]

    РАДИОСПЕКТРОСКОПИЯ — область физики, посвященная исследованию электромагнитных спектров веществ в диапазоне частот от нескольких герц до 3-1011 гц. Наибольшее применение в химии получили методы магнитной Р. ядерный магнитный резонанс (ЯМР) и электронный пара.магнитный резонанс (ЭПР). Оба эти метода основаны на эффекте Зеемана (см. Зеемана явление). ЯМР открыли в 1946 Блох и Перселл. Ядра многих элементов (Н , С , [c.242]

    Несмотря на то что метод ядерного магнитного резонанса (ЯМР) широко используется для выяснения стереохимических проблем в приложениях к чисто органическим соединениям, применение его для изучения стереохимии координационных соединений удивительно ограничено. Тем не менее потенциальные возможности метода ЯМР в этой области огромны. Подробное рассмотрение теории ЯМР выходит за пределы настоящей книги. В этой области имеются ценные работы, выполненные на элементарном и высшем уровнях (см., например, литературу в конце главы), и читатель перед чтением данного раздела в случае необходимости может обратиться к ним. Однако некоторые аспекту теории этого метода, важные для последующего обсуждения, будут кратко рассмотрены. [c.325]

    При применении цеолитов в различных областях используют как молекулярноситовое действие, так и особенности химического строения и адсорбционного поля пористых кристаллов. Структура поверхности больших полостей синтетических цеолитов определяет природу взаимодействия ее с молекулами различного электронного строения. В настоящее время для изучения межмолекулярных взаимодействий применяют комплекс современных физико-химических методов исследования, в частности спектральных. Ценную информацию о природе активных центров, состоянии адсорбированной фазы и подвижности адсорбированных молекул дают исследования методом ядерного магнитного резонанса (ЯМР). Особенно широкое распространение нашел метод протонного магнитного резонанса (ПМР), так как соответствующие спектры обычно наиболее интенсивны и просты в интерпретации [309]. [c.96]

    В послевоенный период происходит еще более интенсивное развитие физической химии. Этому способствовало быстрое расширение области использования ее методов и выводов и сильное увеличение ее экспериментальных и теоретических возможностей Доступные пределы температур расширяются до 0,00001 К в сто рону низких температур и десятков тысяч К в сторону высоких Становятся доступными давления до 100 килобар и выше и ва куум до 10 мм рт. ст. Чрезвычайно обогатились методы иссле дования строения и свойств молекул. Сюда относятся, в частности, развитие техники инфракрасных спектров, исследование спектров при низких температурах, возможность использования достижений электроники и радиотехники, элек -ронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР), применение автоматики, широкое использование быстродействующих электронных вычислительных машин, развитие метода масс-спектрометрии, использование радиоактивных изотопов и ядерных излучений, квантовых генераторов (лазеры). Возможность использования в лабораторных исследованиях новых видов материалов (полупроводники, полимеры и др.). [c.24]

    Достижения в области исследования состава битумов являются следствием применения методов и приборов, обычно используемых в смежных областях науки. Поэтому для более глубокого изучения битумов необходимо находить более рациональные методы разделения битумов на узкие фракции, а также применять новейшие методы их исследования (сольвентное фракционирование, селективная адсорбция, термодиффузия, диализ, электрическое осаждение, аддукция мочевиной, спектроскопия, микроскопия, пара- и ядерно-магнитный резонанс). Одним из перспективных методов разделения битума на фракции по молекулярному весу является гельфильтрование. [c.37]

    За последние годы много сведений о строении неорганических комплексов получено благодаря применению методов рентгеноструктурного анализа, измерения магнитной проницаемости, ядерного магнитного резонанса (ЯМР), мёссбауэровской спектроскопии и т. д. Полученные данные о структуре комплексов соотнесены с данными об их химических свойствах с целью создания обоснованной теории в этой области химии. [c.475]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Магнитные Ж. а. Действие их основано на измерении электромагн. энергии при ее резонансном поглощении атомами и молекулами анализируемой жидкости, обладающей магн. св-вами (напр., магн. проницаемостью). Нанб. распространены магнитно-резонансные Ж. а.-ЭПР- и ЯМР-приборы. Область их применения ограничена анализом спиртов, к-т и своб. радикалов с пределом обнаружения 10 моль (см. также Электронный парамагнитный резонанс Ядерный магнитный резонанс). [c.151]

    Среди важных спектроскопических методов, которые химик использует для установления структуры вещества, спектроскопия ядерного магнитного резонанса — метод относительно новый. В 1945 г. две группы физиков, работавших независимо,— Перселл, Торри и Паунд в Гарвардском университете и Блох, Хансен и Паккард в Станфордском университете — впервые успешно наблюдали явление ядерного магнитного резонанса (ЯМР) в твердых телах и жидкостях. Уже через очень короткий период времени, в начале 50-х годов, это явление было впервые применено для решения химической задачи. С того времени значение химических приложений ЯМР постоянно возрастало и было опубликовано бесчисленное количество статей по ядерному магнитному резонансу или его применениям во всех областях химии. [c.10]

    Электронный магнитный резонанс имеет более ограниченную область применения, чем ядерный магнитный резонанс, так как для большинства молекул компенсируются магнитные моменты, связанные с движением орбитальных электронов. Большинство электронов спарено и не показывает магнитного резонанса. Электронный магнитный резонанс характерен для всех люлекул, содержащих неспаренные или неполностью спаренные электроны. Свободные радикалы и молекулы в триплетном состоянии были широко изучены методом электронного магнитного резонанса. Этим путем было установлено присутствие свободных радикалов в кристаллах, подвергнутых действию рентгеновского излучения или гамма-излучения, а их концентрация была оценена по площади иод кривой поглощения. Изучение этим методом жидкой серы, содержащей молекулы S , сгруппированные в кольцеобразные структуры, в которых электроны спарены, и цепные молекулы с неспаренными электронааш на концах, показало, что длина цепи п имеет порядок 1,5-10 . [c.232]

    Радиоволновой неразрушающий контроль основан на анализе взаимодействия электромагнитного излучения радиоволнового диапазона с объектами контроля. На практике наибольшее распространение получили сверхвысокочастотные (СВЧ) методы, использующие диапазон длин волн от I до 100 мм. Взаимодействие радиоволн может носить характер взаимодействия только падающей волны (процессы поглощения, дифракции, отражения, преломления, относящиеся к классу радиооп-тических процессов) или взаимодействия падающей и отраженной волн (интерференционные процессы, относящиеся к области радиоголографии). Кроме того, в радиодефектоскопии могут использоваться специфические резонансные эффекты взаимодействия радиоволнового излучения (электронный парамагнитный резонанс, ядерный магнитный резонанс и др.). Использование радиоволн перспективно по двум причинам достигается расширение области применения неразрушающего контроля, так как для контроля диэлектрических, полупроводниковых, ферритовых и композитных материалов радиоволновые методы наиболее эффективны во вторых-п -является возможность использования радиоволн СВч диапазона. [c.420]

    Таким образом, 2№тод приобредл)громное значение для исследования молекулярной структуры и обменных вза-"имодействий в молекуле. Тем самым определились также две основные области применения спектроскопии ядерного магнитного резонанса (ЯМР). [c.13]

    В то время как потенциометрическое определение константы ионизации занимает всего лишь 20 мин, применение спектрофотометрического метода в ультрафиолетовой области спектра для той же цели требует большую часть рабочего дня. Тем не менее, этот метод оказывается удобным для определения кон- стант плохо растворимых веществ, а также для работы при очень малых или очень больших значениях pH, когда стеклян-ный электрод непригоден. Спектрофотометрический метод может быть использован лишь в тех случаях, когда вещество поглощает свет в ультрафиолетовой или видимой области и максимумы поглощения соответствующих ионных форм находятся на различных длинах волн. Спектрофотометрические определения всегда связаны с потенциометрическими, поскольку спектральные измерения проводятся в буферных растворах, значения pH которых определяются потенциометрически. Потенциометрическое определение констант ионизации путем измерения концентрации ионов водорода не связано непосредственно с определением неизвестных (исследуемых) веществ. При спектрофотометрическом же методе измеряются сдвиги спектральных линий, обязанные присоединению протона к неизвестному (исследуемому) веществу (глава 4). Рамановские спектры и ядерный магнитный резонанс позволяют определять константы ионизации даже таких сильных кислот, как азотная и трифторуксусная [c.17]

    Явление магнитного резонанса было открыто сначала на парамагнитных ионах Завойским в 1944 г. [1 ], а в 1946 г. — группам1в Блоха и Переела на протонах [2, 3]. Влияние комплексообразования на ядерный магнитный резонанс отмечалось еще в ранних. работах по ЯМР. Однако непосредственное изучение комплексообразования в растворах и индивидуальных комплексов стало возможным лишь с развитием метода. В числе первых следуёт отметить работы Козырева и Ривкинда и вообще казанской школы -физиков [4—10]. Ривкинд первый начал систематические исследования и впервые указал на чрезвычайную перспективность применения магнитного резонанса для исследования комплексных соединений в растворах [4, 5, 10]. Следует также подчеркнуть, что эти и подобные исследования были отнюдь не случайны, но продиктованы необходимостью учитывать влияние комплексообразования на процессы, совокупность которых представляет собой магнитный резонанс. Это, в первую очередь, обусловлено тем, что как ЯМР, так и ЭПР неразрывно связаны именно с кинетическими свойствами вещества, одним из проявлений которых является комплексообразование в растворах. Такая необходимость является одним из примеров взаимодействия и взаимопроникновения физики и химии, причем в самых разнородных, на первый взгляд, областях. [c.201]

    В связи с тем, что у аморфных полимеров также возможна упорядоченность в расположении макромолекул, а в кристаллических полимерах имеются принципиально неустранимые разупорядоченные области (см, прим, ред. на стр, 53, 56—58), применение ядерного магнитного резонанса (ЯЛ1Р) к определению степени кристалличности не может быть столь простым, как это представляется автору.—Яр л(. ред. [c.119]

    В широком смысле хроматограмма ничем не отличается от сигналов, полученных от спектральных приборов, поэтому для ее обработки можно использовать весь математический аппарат, который применяют при обработке спектров. Типичными операциями со спектрами являются сглаживание, интегрирование и дифференцирование, увеличение разделительной способности. Мощным средством для проведения этих операций является использование преобразования Фурье. Для обработки сигналов это не новый метод, но лишь развитие вычислительной техники и математического обеспечения дало новый толчок для его использования. Здесь мы не будем рассматривать такие области применения преобразования Фурье, где оно инструментально связано с данными измерения (например, Фурье-спектроскопия в оптике и ядерно-магнитном резонансе [44, 45]). Там полученный сигнал является преобразованием Фурье от спектра. Но проблемы сглаживания, диффереи- [c.106]

    Для ознакомления с основами и областью применения методов парамагнитного и ядерного магнитного резонанса можно использовать монографии Блюменфельд Л. А., Воеводский В. В., Семенков А. Г., Применение электронного парамагнитного резонанса в химии, Новосибирск, 1962. Бхакка Н., Уильямс Д., Применение ЯМР в органической химии, пер. с англ., Москва, 1966. [c.177]

    Главная задача спектроскопии ЯМР — определение структуры чистых органических соединений. Метод особенно важен для изучения конфигурации основной цепи, изомерии и пространственной геометрии молекулы. Последнее из указанных применений связано с присутствием в органических молекулах магнитно-анизотропных групп, пространственное расположение которых сильно влияет на вид спектра. К таким группам относятся ароматические и трехчленные кольца, карбонильные группы, ацетиленовые инитрильные группы. Возможность сравнительно простого определения пространственного строения определила широкое применение ЯМР-спектроскопии для исследования природных соединений. ЯМР-спектроскопия неоценима при определении цис-транс-шгои жа относительно двойной связи, изомерии производных бензола, состава смеси кето-енолов и других таутомеров. Основные ограничения метода определяются сложностью интерпретации спектра при наличии большого числа магнитных ядер, а также возможностью подбора подходящего растворителя (не поглощающего в области резонанса исследуемого вещества). Первое ограничение в значительной степени преодолевается совершенствованием техники математического анализа спектров и применением специальных методов. К последним относятся двойной ядерный магнитный резонанс, изотопное замещение, использование приборов с более высокой напряженностью магнитного поля, исследование резонанса на ядрах при природном содержании и др. (гл. IV). Второе же ограничение устраняется использованием набора растворителей, в том числе изотопнозамещенных (главным образом, дейтерированных) соединений. [c.47]


Смотреть страницы где упоминается термин Ядерного магнитного резонанса область применения: [c.192]    [c.382]    [c.16]    [c.247]    [c.216]    [c.746]    [c.192]   
Быстрые реакции в растворах (1966) -- [ c.16 , c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Область применения

Резонанс г ядерный магнитный

Ядерный магнитный резонанс применение



© 2025 chem21.info Реклама на сайте