Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидные спаривание

    Транскрипция является первой стадией реализации (считывания) генетической информации, на которой нуклеотидная последовательность ДНК копируется в виде нуклеотидной последовательности РНК. В основе. механизма копирования при транскрипции лежит тот же структурный принцип комплементарного спаривания оснований, что и прн репликации. Транскрипция осуществляется ферментами РНК-полимеразами, синтезирующими РНК на ДНК-мат-рице из рибонуклеозидтрифосфатов. [c.133]


    Еш,е до того как была окончательно установлена триплетная природа кодонов, Крик и его сотрудники, остроумно использовав мутации со сдвигом рамки, доказали, что генетический код действительно составлен из нуклеотидных триплетов. Рассмотрим, что произойдет при спаривании двух штаммов бактерий, каждый из которых несет мутацию со сдвигом рамки (например, делецию —1). В результате генетической рекомбинации могут образоваться мутанты, содержаш,ие обе мутации со сдвигом рамки. Однако распознать такие рекомбинанты будет трудно, так как (согласно практически любой теории кодирования) они по-прежнему будут продуцировать полностью дефектные белки. Крику и его сотрудникам удалось, однако, ввести в тот же ген третью мутацию со сдвигом рамки того же типа и наблюдать, что рекомбинанты, несуш,ие все три делеции (или вставки), были способны синтезировать, по крайней мере частично, активные белки. Это объясняется просто. Делеции одного или двух нуклеотидов полностью инактивируют ген, тогда как при делеции трех нуклеотидов, расположенных в пределах одного гена и близко друг от друга, ген укорачивается лишь на три нуклеотида. В гене будет содержаться в этом случае лишь небольшая область с измененными кодонами. Кодируемый белок будет нормальным, за исключением небольшого участка, в котором некоторые из аминокислот будут заменены, а одна будет полностью отсутствовать. Мы уже знаем, что в большинстве белков полностью инвариантна лишь сравнительно небольшая доля аминокислот. Таким образом, очень часто ген, в котором модифицирована небольшая область, может синтезировать функционально активные продукты при условии, что не произошло сдвига рамки считывания. [c.252]

    Если репликативная форма ДНК фага X замкнута в кольцо, то ДНК зрелых частиц имеет, как известно, линейную форму. В отличие от линейной ДНК Т-четных фагов ДНК фага X при освобождении из вириона самопроизвольно образует либо кольца, либо линейные агрегаты . Это свидетельствует о том, что ДНК фага Я имеет липкие концы, соединяющиеся друг с другом за счет специфического спаривания оснований. Непосредственное определение нуклеотидной последовательности подтвердило это предположение. На рис. 15-23 показана [c.262]

    Разрыв в одной из цепей ДНК высвобождает эту цепь, и она внедряется во вторую спираль, образуя короткий спаренный участок. После начального обмена гомологичные нуклеотидные последовательности двух взаимодействующих спиралей устанавливаются в строгом соответствии одна с другой, в связи с чем происходит расширение области спаривания и быстрый обмен между спиралями. Для этого процесса разные организмы используют неодинаковые механизмы, большинство из которых включает в качестве промежуточного этапа обмен с перекрещиванием цепей между двумя спиралями ДНК (рис. 5.7). [c.114]


    Опыты по гибридизации позволили исследовать гомологичность нуклеиновых кислот из разных источников. Вначале молекулы расщепляют (например, с помощью ультразвука) на фрагменты длиной 1000 нуклеотидов и подвергают денатурации. Фрагменты денатурированной ДНК смешивают с денатурированной ДНК из другого источника. Участки ДНК разных видов, имеющие близкие нуклеотидные последовательности, в той или иной степени гибридизуются, тогда как участки с сильно различающимися последовательностями гибридизации не поддаются. Рассмотрим один из вариантов постановки таких экспериментов. Денатурированную ДНК определенного организма, не подвергавшуюся деградации, заключают в агаровый гель [90] или наносят на нитроцеллюлозный фильтр [91]. Фрагменты ДНК из другого источника пропускают через колонку с ДНК-содержащим агаром или через фильтр с абсорбированной ДНК. Комплементарное спаривание соответствующих фрагментов задерживает их на колонке или фильтре, тогда как фрагменты, не нашедшие себе партнеров , свободно проходят дальше. [c.143]

    Почему число отобранных типов аминокислот равно именно 20 Этот вопрос также связан с механизмом трансляции. На рис. 1.5,аг в порядке дискуссии даны некоторые трансляционные схемы существующего генетического кода. При дублетном варианте (длина кодона равна двум нуклеотидам) с помощью четырех разных нуклеотидов можно закодировать 4 = 16 аминокислот. Однако для длины кодона природа выбрала не два, а три нуклеотида. Для пояснения этого факта напомним, что длина кодона связана с решающим шагом в трансляции — опознанием нуклеотидной последовательности информационной РНК путем спаривания оснований нуклеотида с небольшой доставляющей аминокислоты транспортной РНК. Можно предположить, что при дублетном коде не оказалось оснований с достаточно большими константами ассоциации, и поэтому кодон должен был увеличиться до триплета, чтобы обеспечить специфическое узнавание. С помощью четырех различных нуклеотидов триплетный код может распознавать 4 = 64 аминокислоты. Однако используются только 0 аминокислот. Для объяснения этого факта нужно предположить, что генетический код развивался и что его эволюция остановилась на полпути. [c.17]

    Процедура ДНК-гибридизации состоит в следующем. ДНК-мишень подвергают денатурации и одноцепочечные молекулы необратимо пришивают к твердой подложке (нитроцеллюлоз-ному или найлоновому фильтру). Эту процедуру обычно проводят при высокой температуре. Затем фильтр инкубируют с одноцепочечным ДНК-зондом, меченным радиоизотопом или другой меткой. Если нуклеотидные последовательности зонда и ДНК-мишени комплементарны, то происходит их спаривание (т. е. гибридизация) (рис. 4.11). Гибридные молекулы можно [c.65]

    ПЦР-продукты каждой реакции денатурируют, быстро охлаждают и разделяют с помощью электрофореза. Благодаря внутрицепочечному спариванию комплементарных оснований и образованию других связей денатурированная одноцепочечная молекула ДНК принимает определенную трехмерную конформацию, зависящую от ее нуклеотидной последовательности. Вследствие комплементарности две цепи одной молекулы ДНК имеют разную нуклеотидную после- [c.467]

    Один виток каждой спирали содержит 10 нуклеотидов, диаметр двойной спирали около 2 нм. Азотистые основания обеих цепей находятся внутри двойной спирали и соединены друг с другом водородными связями. Связывание (спаривание) азотистых оснований осуществляется строго определенным образом. Аденин всегда соединяется с тимином, а гуанин - с цитозином, причем все без исключения основания одной цепи спарены с основаниями второй. Вследствие этого обе нуклеотидные цепи, образующие молекулу ДНК, имеют одинаковую длину и пространственно соответствуют друг другу. Если в каком-то месте одной цепи находится аденин, то обязательно напротив него в другой цепи присутствует тимин, а напротив гуанина всегда располагается цитозин. [c.16]

    Мы уже говорили о том, что благодаря специфичности спаривания оснований (С—С и А—Т) двойная спираль ДНК сохраняет постоянную структуру независимо от последовательности нуклеотидных пар. Это означает, что индивидуальные молекулы ДНК различаются последовательностью нуклеотидов, а не значительными изменениями в структуре. (В противоположность белкам, у которых общая структура белка зависит от последовательности аминокислот, но именно эта общая структура в целом определяет биологическую функцию.) Совсем небольшие различия в нуклеотидной последовательности ДНК могут иметь очень важное значение, поскольку замена одной пары оснований вызывает мутацию. [c.49]

    Действительно, для каждого гетероциклического основания можно подобрать такой химический реагент, который избирательно взаимодействует только с атомами или группами, участвующими в образовании водородных связей при комплементарном спаривании нуклеотидных остатков. Так, например, кетоксаль избирательно взаимодействует с N1 и 2-NHj-rpynnoft гуанина, диметилсульфат (в определенных условиях)—с N1 аденина и N3 цитозина, карбо-диимид — с N3 урацила. Следовательно, если тог или иной.нуклео- [c.38]

    Фокс и соавторы исследовали зависимость прочности сорбции на оксиапатите нативной и денатурированной ДНК от температуры сорбента и концентрации элюирующего фосфатного буфера. В случае фрагл1ентированной ДНК из плаценты длиной около 500 пар основании авторы регистрировали различие в прочности сорбции правельных двунитевых структур с температурой плавления 84° и несовершенных структур с неточным спариванием нитей, температура плавления которых составляла соответственно 77° и 70°. На рис. 106 результаты этого исследования представлены в виде диаграммы. Под нижней кривой лежит область связывания с оксиапа-титом как нативной, так и денатурированной ДНК. Выше верхней кривой располагается область элюции нативной ДНК. Между кривыми заключена область значений концентраций фосфатного буфера и температур, в которой на оксиапатите удерживается нативная ДНК, а денатурированная элюируется. Пунктиром я точками обозначены верхние границы атой области для случаев несовершенного спаривания нитей ДНК. Показанные на диаграмме границы областей не являются линиями истинно фазовых переходов на самом деле эти границы имеют диффузный характер. Здесь они обозначают соотношение параметров, при котором за определенное время элюируется 50% ДНК соответствующего типа. Положение границ зависит от нуклеотидного состава ДНК, последовательности нуклеотидов и партии оксиапатита — их следует рассматривать как ориентировочные. Тем не менее небезынтересно отметить различие ха- [c.237]


    Репликаза фага Q способна in vitro синтезировать цепи, полностью комплементарные как плюс-, так и минус-молекулам вирусной РНК. Система, однако, специфична для вирусной РНК и не может копировать никаких других полинуклеотидов. Возможно, что для инициации процесса репликации нужно, чтобы на З -конце имелись определенные последовательности. В пробирке репликация протекает с ошибками, такими, в частности, как преждевременная терминация цепи и неправильное спаривание оснований. В результате происходит образование мутантных форм РНК, что дает возможность получать молекулы РНК, размеры которой будут значительно меньше, чем у вирусной РНК, и которые будут при этом легко реплицироваться репликазной системой фага Q . Была установлена нуклеотидная последовательность одного из таких фрагментов, включающего всего лишь 114 нуклеотидов . [c.245]

    В основе мол. механизма законной Р. г. лежит принцип разрьш-воссоединение двух гомологичных молекул ДНК. Этот процесс (его наз. кроссинговер) включает неск. промежут. этапов 1) узнавание участков 2) разрыв и ре-ципрокное (крест-накрест) воссоединение молекул замена одних цепей гомологичными 3) устранение ошибок, возникающих в результате неправильного спаривания участков. Точка обмена может возникать па любом > часткс гомологичных нуклеотидных последовательностей хромосом, вовлекаемых в обмен. При этом в точке обмена обычно не происходит изменения нуклеотидных последовательностей. Точность разрыва и воссоединения чрезвычайно ведшка ни один нуклеотид не утрачивается, не добавляется и не превращается в к.-н. другой. [c.230]

    Прежде всего, можно более или менее определенно локализовать на первичной структуре РНК те нуклеотидные остатки или олигонук-леотидные районы, которые не участвуют в комплементарном спаривании и вероятнее всего представляют собой однотяжевые секции цепи. Эти районы особенно чувствительны к таким рибонуклеазам, как панкреатическая пиримидил-РНКаза А, грибная гуанил-РНКаза Tt, бактериальная РНКаза Si, и к модификации их оснований такими [c.71]

    Однако оказалось, что такое строгое каноническое спаривание оснований не является об им правилом для взаимодействия первого остатка антикодона с третьим остатком кодона. Прежде всего было замечено, что если аминокислота кодируется двумя, тремя или четырьмя кодонами, то первые два нуклеотидных остатка кодонов всегда идентичны, а третий различается (см. рис. 3). Следовательно, аминокислота строго кодируется двумя первыми буквами кодона и менее строго — третьей. С другой стороны, было обнаружено, что рибосомы, программированные разными кодонами для одной и той же аминокислоты, могут связывать одну и ту же тРНК, т. е. тРНК может узнавать более чем один кодон. Например, одна и та же фенилаланиновая тРНК узнает как UUU, так и UU . Анализируя эти и некоторые другие факты, Ф. Крик вьщвинул гипотезу о неоднозначном спаривании первого нуклеотида антикодона с третьим остатком кодона он предположил возможность нестрогого соответствия [c.155]

    Проблема специфического фактор - кодонового взаимодействия, вместо кодон-антикодонового взаимодействия, очень интересна. Поразительно, что белок тоже узнает именно триплет нуклеотидов, и узнавание имеет такую же высокую степень специфичности. Более того, при наличии супрессорной тРНК, комплементарной терминирующему кодону, аминоацил-тРНК и фактор терминации равноправно конкурируют за посадку в А-участок рибосомы. Использование различных модифицированных нуклеотидных остатков в терминирующих кодонах указывает на то, что специфичность RF в узнавании кодона очень напоминает специфичность Уотсон — Криковского спаривания оснований, включая Криковское неоднозначное спаривание ( wobble ). Безусловно, структура белкового антикодона представляет собой очень интригующую и важную задачу, в том числе для решения общих проблем белок-нуклеинового узнавания. [c.267]

    В структуре ДНК, как и в структуре РНК, открыты нуклеотидные последовательности, получившие название палиндромы , или перевернутые повторы. Они встречаются как внутри одной цепи, так и в двойной спирали. Например, как слово ротатор, которое одинаково читается как справа налево, так и обратно. Подобные обратные повторы могут служить основой для образования структуры шпилек или других вариаций с измененным внутрицепочечным и межцепочечным спариванием и формированием на отдельных участках тройной спирали. Возможно, эти палинд-ромные структуры имеют определенный биологический смысл в регуляции экспрессии отдельных генов, выполняя роль сайтов для ДНК-связывающих белков. Предстоит, однако, приложить немало усилий для установления как точной структуры этих вариаций, так и для определения их функциональной роли. [c.110]

    Клонируемый ген встраивают в N ol-, Pst -или // иёШ-сайт, расположенный между сайтом связывания рибосомы и сайтами терминации транскрипции. Если его рамка считывания не попадает в ногу с кодоном AUG, то необходимо произвести минимальную коррекцию. В этом случае после индукции и транскрипции происходит достаточно эффективная трансляция клонированного гена. Однако следует иметь в виду, что поскольку нуклеотидная последовательность, кодирующая N-концевой участок белка-мищени, у разных клонированных генов неодинакова, нельзя создать универсальный вектор, исключающий одноцепочечное спаривание мРНК при любых обстоятельствах. Поэтому ни одна из областей инициации трансляции, как бы она ни была оптимизирована, не может га- [c.121]

    Если клетка трансформирована нереплици-рующейся плазмидой, несущей клонированный ген в середине клонированного фрагмента с хромосомным сайтом интеграции, то может произойти спаривание между гомологичными нуклеотидными последовательностями плазмиды и хозяйской ДНК (рис. 6.15, А) и далее интеграция в результате двойного кроссинговера, осуществляемого ферментами клетки-хозяина. Альтернативный вариант — интеграция всей плазмидной ДНК в хромосому хозяина в результате одиночного кроссинговера (на рисунке не показано). Интеграция всей плазмиды может произойти и в том случае, если клонированный [c.123]

    Имеющиеся в настоящее время данные позволяют ответить на эти вопросы. Они свидетельствуют о том, что удаление нетранслируемых интронов при процессинге предшественников мРНК протекает таким образом, что следующие друг за другом экзоны, т.е. кодирующие фрагменты мРНК, никогда физически не разобщаются. Экзоны очень точно соединяются между собой с помощью молекул другого класса РНК, присутствующих в ядре и называемых малыми ядерными РНК (мяРНК). Функция этих коротких ядерных РНК, состоящих приблизительно из ста нуклеотидов, долго оставалась непонятной. Ее удалось установить после того, как было обнаружено, что их нуклеотидная последовательность комплементарна последовательностям на концах каждого из интронов. В результате спаривания оснований, содержащихся в мяРНК и на концах свернутого в петлю интрона, последовательности двух экзонов сближаются таким образом, что становится возможным удаление разделяю- [c.917]

    Вторичная структура ДНК представляет собой лвойнук> спираль, состоящую из двух переплетенных цепей ДНК (рис. 12.26). В полный виток каждой спирали укладывается около десяти нуклеотидных единиц, и две цепи выстраиваются в противоположных направлениях так, чтобы могло произойти спаривание оснований. [c.280]

    Было показано, что после заражения Е, oli бактериофагом Т4 на фаговой ДНК-матрице начинает синтезироваться фагоснецифичная РНК, которую можно отличить от бактериальной РНК. Оказалось, что в РНК, синтезируемой на мутантной Т4-ДНК, в которой один из участков выпал делеция), отсутствует специфическая нуклеотидная последовательность, имеющаяся в РНК фага дикого типа. Этот результат также можно расценивать как доказательство комплементарного спаривания оснований нри синтезе РНК. [c.513]

    Уотсон и Крик выдвинули идею о специфическом спаривании на основании имевшихся в их распоряжении данных о нуклеотидном составе различных ДНК. Из этих даных следовало, что отношения аденин тимин и гуанин цитозин близки к единице. Уотсон и Крик дали наиболее вероятную схему образования пар. [c.217]

    Благодаря дополнительной подвижности структуры, которая позволяет делать выбор между конкурирующими конформациями, РНК принимает наиболее устойчивую конформацию, соответствующую данной температуре и ионной силе. При этом значительно возрастающее спаривание оснований делает возможным выталкивание нуклеотидных участков наружу в виде петель, причем спиральные участки образуют П-образные фрагменты, в которых связанные водородными связями аитииараллельные последовательности нуклеотидов соединены минимум тремя нуклеотидами, образующими изгиб [359]. На рис. 8-36 изображена возможная вторичная структура рибонуклеиновых кислот. [c.627]

    Гибридизация ДНК - ДНК и ДНК - РНК. Если дуплексы ДНК, выделенные из клеток человека и мыши, денатурировать нагреванием по отдельности, а затем смешать и выдержать в течение многих часов при температуре ниже температуры плавления, то большая часть цепей мышиной ДНК отжигается с комплементарными цепями мышиной ДНК с образованием исходного дуплекса. Аналогичным образом большинство цепей ДНК человека воссоединяется с комплементарными цепями ДНК человека. Наряду с этим некоторое число одиночных цепей ДНК мыши будет связываться с одиночными цепями ДНК человека, в результате чего появляются гибридные дуплексы, в которых отдельные участки цепей ДНК мыши образуют двухцепочечные области с участками цепей ДНК человека (при наличии комплементарных пар оснований). Гибридные дуплексы возникают только при условии, что между ДНК двух разных видов существует комплементарное сходство в нуклеотидных последовательностях. Чем ближе родство двух видов, тем в большей степени их ДНК будут образовывать гибриды. Например, ДНК человека гораздо лучше образует гибриды с ДНК мыши, чем с ДНК дрожжей. При наличии комплементарных пар оснований возможно образование гибридных дуплексов ДНК — РНК. Например, в ходе транскрипции новосинтезируемая цепь РНК временно образует короткие отрезки гибридной двойной спирали ДНК — РНК (за счет спаривания ее оснований с основаниями матричной цепй ДНК). Гибридизационные тесты используют в биохимической генетике для определения того, насколько близки два вида для установления связи данной ДНК с какой-либо РНК для выделения и очистки генов и РНК и определения их нуклеотидных последовательностей. [c.300]

    Опыты по репатурации ДНК свидетельствуют, что при термической денатурации обязательно, в отличие от других видов денатурации, происходит разделение двойной спирали на одиночные нуклеотидные цепи. Процесс ренатурации можно сравнить с застегиванием молнии, когда происходит последовательное спаривание комплементарных оснований, а возникающее при этом ошибочное спаривание быстро ликвидируется. [c.424]

    Каждая молекула тРНК представляет собой цепь из - 80 нуклеотидов, обладающую двумя замечательными структурными особенностями. Во-первых, цепь состоит из чередующихся участков двух типов. Участки первого типа взаимно комплементарны и могут соединяться путем спаривания оснований. Нуклеотидные последовательности участков второго типа не являются взаимно комплементарными. Чередование таких участков свойственно всем тРНК. Некомплементарные участки образу- [c.25]

    Фракция повторяющейся ДНК состоит из семейств сходных, но не идентичных последовательностей. В состав каждого семейства входит набор нуклеотидных последовательностей, имеющих достаточное сходство, чтобы ренатурировать друг с другом. Различия же обусловлены заменами оснований, вставками и делециями, приводяшими к появлению внутри сходных последовательностей точек, в которых не может происходить спаривание оснований комплементарных цепей. Число таких [c.228]


Смотреть страницы где упоминается термин Нуклеотидные спаривание: [c.226]    [c.619]    [c.23]    [c.34]    [c.227]    [c.252]    [c.120]    [c.82]    [c.849]    [c.866]    [c.935]    [c.134]    [c.293]    [c.294]    [c.307]    [c.231]    [c.278]    [c.348]    [c.26]   
Молекулярная биология клетки Том5 (1987) -- [ c.125 ]




ПОИСК







© 2025 chem21.info Реклама на сайте