Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитические ртути

    Этот способ годен только для больших капилляров, в которых вес ртути не слишком мал. Обыкновенные аналитические весы не достаточно чувствительны к очень малым нагрузкам, а между тем в данном случае большое значение имеет полная точность в четвертом и даже пятом знаке. [c.283]

    Градуируют капилляры с помощью ртути. Для этого небольшое ее количество втягивают в капилляр и измеряют число делений, приходящихся на данный столбик ртути. Затем столбик ртути осторожно передвигают по длине капилляра и снова измеряют число делений. Из полученных делений берут среднюю величину N и взвешивают на аналитических весах вылитую из капилляра в бюкс ртуть. Объем а, соответствующий одному делению шкалы капилляра, вычисляют по формуле  [c.181]


    Растворы сравнения готовят непосредственно перед анализом. Для этого используют стандартный раствор сульфата рту-ти(П) с концентрацией 0,1 мкг/мл, подвергая ее разбавлению в соответствии с уровнем содержания ртути в анализируемой пробе. Растворы сравнения проводят чер з все стадии аналитической процедуры точно так же, как и анализируемые пробы. [c.172]

    I Каталитические токи возникают, если электродные процессы связаны с протеканием каталитической электрохимической реакции обычно они зависят от скорости каталитического выделения водорода. На максимумы волн по-разному влияют высота столба ртути и температура. С увеличением концентрации катализатора каталитические токи приближаются к предельному значению. Каталитические токи можно успешно применять в аналитических целях, если использовать градуировочные кривые, так как в этом случае волны. намного больше (например, в 500 раз), чем можно было бы ожидать для диффузионного предельного тока каталитически действующего деполяризатора. [c.291]

    Ознакомившись с химическими свойствами некоторых анионов, можно перейти к их аналитической классификации, т. е. к разделению изученных анионов на отдельные аналитические группы. Для аналитических групп анионов характерны общие аналитические реакции — окислительно-восстановительные или обменные, т. е. одинаковое отношение к определенному химическому реактиву, называемому в этом случае групповым реактивом. Групповыми реактивами могут служить, например, растворимые соли бария, стронция, серебра, свинца, ртути (I) и (II) и некоторых других металлов, с которыми одни анионы образуют малорастворимые соли, а другие — нет. Групповым реактивом может быть какой-либо окислитель или восстановитель, меняющий окраску в процессе реакции. [c.212]

    Поскольку ток на вращающемся дисковом электроде пропорционален концентрации реагирующего вещества, этот электрод может быть использован для аналитических целей. Количественный анализ раствора можно выполнять и при помощи других электрохимических методов, например, при помощи полярографического метода на ртутном электроде. Однако ртутный электрод нельзя использовать в анодной области потенциалов, так как ртуть при этом подвергается анодному растворению. Вращающийся диск можно приготовить из любого твердого металла, например из благородных металлов, которые устойчивы в анодной области потенциалов и потому позволяют изучать анодные процессы. Кроме того, на твердых электродах отсутствуют тангенциальные движения поверхности и связанные с ними искажения поляризационных кривых, которые наблюдаются на жидких электро- [c.181]


    Для элиминирования миграционного переноса восстанавливающегося вещества к электроду в исследуемые растворы добавляют так называемые электролиты фона в достаточно высокой концентрации ( М). В качестве электролитов фона используют соли, катионы которых восстанавливаются при высоких катодных потенциалах, а растворение ртути в присутствии аниона соли происходит при достаточно высоких анодных потенциалах. Выбор фона, таким образом, определяет диапазон потенциалов, в котором возможно проводить аналитическое определение или исследование кинетики электрохимических реакций. Чаще всего в качестве электролита фона используют соли щелочных металлов и тетраалкиламмониевых оснований. [c.239]

    В предварительно взвешенную колбу помещают взятую на аналитических весах навеску бутилкаучука 0,3 г и растворяют в 30 мл четыреххлористого углерода (или хлороформа), затем взвешивают. Для определения непредельности 10 мл раствора отбирают в коническую колбу, взвешивают и добавляют до объема 100 ыл используемый растворитель, 5 мл 20%-ного раствора трихлоруксусной кислоты, 10 мл 0,1 и. раствора иода и 25 мл 3%-ного раствора уксуснокислой ртути. Колбу закрывают пробкой, смоченной раствором иодистого калия, и ставят в темное место на 30 мин. [c.79]

    Окрашенными соединениями являются все соли катионов третьей аналитической группы, образуемые кислотами с окрашенными анионами, все соли меди (И), кобальта и никеля, иодид ртути (II), гидроксиды меди (II), никеля, кобальта и все сульфиды, за исключением ZnS, который имеет белый цвет. [c.61]

    Открытие Hg -ионов в присутствии катионов других аналитических групп. 2—5 капель исследуемого раствора обрабатывают равным объемом 2 н. раствора хлористоводородной кислоты. Осадок отделяют центрифугированием. Каплю центрифугата помещают на очищенную медную пластинку. В присутствии Hg -ионов образуется блестящее пятно металлической ртути. [c.69]

    Характерной особенностью сульфидов является их цвет. Сульфиды щелочных и щелочноземельных металлов бесцветны, сульфиды тяжелых металлов окрашены в различные цвета, например, сульфиды железа, кобальта, никеля, серебра, ртути, свинца, висмута окрашены в буро-черный цвет, цинка и германия — в белый, марганца — в телесный, кадмия, олова и мышьяка — в желтый, сурьмы — в оранжевый. Этим пользуются в аналитической химии для распознавания отдельных катионов в растворах солей. [c.566]

    При монтаже прибора определяют объем капиллярного пространства гребенки с отростками, заполняя его водой или ртутью с последующим вытеснением ее и взвешиванием на аналитических весах. Обычно этот объем не превышает 1,5 см . Для упрощения расчетов в бюретку обычно набирают 98,5 см газа, тогда его суммарный объем составит 100 см . Бюретка должна быть чисто вымыта, чтобы запирающая жидкость свободно стекала по ее стенкам от этого зависит правильность отсчетов. Обычно дают жидкости стекать в течение 1 ман. Время измеряют песочными часами. В качестве запирающей жидкости служит насыщенный раствор хлористого магния или 10%-ный раствор серной кислоты, подкрашенной метилоранжем. В этих растворах СО2 почти не растворяется, вследствие чего исключается неточность определения содержания этого колшонента в исследуемом газе. [c.242]

    Установив начальное положение ртути, приступают непосредственно к определению объема частиц катализатора. Для этого, создав разряжение, ртуть переводят в правое колено прибора, а в освободившуюся олбу 4 через пробку вводят 1,5—2,0 г катализатора, взвешенного на аналитических весах с точностью до 0,0002 г. Предварительно катализатор высушивают до постоянной массы нри 150° С. [c.42]

    Термометры со стандартными шлифами выпускают с интервалом измерения от О до 50 н ценой деления 0,1 °С. Изготавливают также угловые термометры. Стеклянные термометры, с ценой деления 0,1 °С, отградуированные соответствующими метрологическим учреждением, служат в качестве эталонов, для термометров со стандартными шлифами и применяются при аналитических разгонках. В паспорте термометра указываетсятубина го погружения и средняя температура столбика ртути во время градуировки. Для термометров с ценой деления 0,1 °С погрешность измерения лежит в следующих пределах  [c.431]

    Аналитическое значение имеют тгкже реакции алкенов с ацетатом ртути(П) и хлоридом серы(1). [c.173]

    В отрезок капиллярной трубки вводят небольшой столбик ртути длиной 1 см. При помощи компаратора, делительного микроскопа или специальной линейки измеряют длину столбика, каторый прогоняют по всей длине капилляра. Измерения проводят через каждые 0,5 см. После того как будет промерен весь капилляр, ртуть выливают на часовое стекло и взвешивают на аналитических весах с точностью до 0,1 мг. [c.282]

    К капиллярной трубке А присоединяют трехходовой кран, дающий возмояшость соединить вискозиметр с атмосферой или вакуум-насосом. В прибор наливают чистую и сухую ртуть в количестве, достаточном для точного заполнения капиллярной трубки от метки а до метки в. После отмеривания ртуть выливают в стаканчик и точно взвешивают на аналитических весах, чтобы при дальнейших определениях брать одно и то же весовое количество ртути. После того как ртуть загружена в прибор, в широкую часть вискозиметра до метки е наливают исследуемый продукт (если необходимо, то при нагреве) и последний проходит в нижний шарик. [c.315]

    В работе [122] показано, что индивидуальные сульфиды являются эффективными экстрагентами солей золота (III), палладия (II), серебра, ртути (И), платины (IV) и теллура (III). Палладий и золото количественно извлекаются диалкилсульфидами из соля-H0-, азотно- и сернокислых растворов в виде комплексов типа [РёСЬ-Зг] и [Au b-S], где S — сульфидный экстрагент. Экстракционная способность практически не изменялась при увеличении молекулярной массы сульфидов. По эффективности и избирательности извлечения сульфиды принадлежат к одним из лучших экстрагентов золота, палладия и серебра. Высокие экстрак-. ционные свойства сульфидов используются в аналитической химии для отделения примесей при нейтронно-активационном, атомноабсорбционном и полярографическом анализе золота, палладия, серебра. [c.342]


    В биосфере циркулирует огромное число ксенобиотиков техногенного происхождения, многие из которых имеют исключительно высокую токсичность. Это так называемые суперэкотоксиканты. Хотя данный термин не является общепризнанным, и его употребление до некоторой степени условно, он все же позволяет выделить из большого числа загрязняющих веществ те, которые, представляют наибольщую опасность для человека. Из органических соединений это прежде всего полихлорированные диоксины, дибензофураны и бифенилы, хлор- и фосфорсодержащие пестициды, полиароматические углеводороды, нитрозамины и др., а из неорганических - ртуть, свинец, кадмий, радионуклиды. Эколого-ана-литическому мониторингу суперэкотоксикантов уделяется в настоящее время повьппенное внимание еще и потому, что указанные соединения могут накапливаться в живых организмах, передаваясь по трофическим цепям. Многие из них проявляют канцерогенную и мутагенную активность, вызьгаают серьезные заболевания человека и животных, являются причиной роста врожденных уродств. Именно это и послужило побудительным мотивом для на1шсания книги, в которой рассмотрены проблемы экологии и аналитической химии суперэкотоксикантов. [c.5]

    Большие трудности при определении фоновых зафязнений окружающей среды суперэкотоксикантами возникают в связи с тем обстоятельством, чго уровни их содержания в природных объектах мог/т быть сравнимы с количествами этих соединений, вносимыми в образец с используемыми в анализе реагентами и из атмосферы. Влияние указанных примесей на результат анализа в общем случае оценигь довольно сложно. Обычно их учитывают при оценке значений холостого опыта (фона) Источником загрязнений может бьггь и сам аналитик. В частности, в продуктах выделения человека идентифицированы около 135 различных соединений, часть которых поглощается из воздуха (бензол, толуол, ХОС, ПАУ и др.) и концентрируется на волосах и коже [5 , а табачный дым, выдыхаемый курильщиком, содержит от 0,1 до 27 нг диметилнитрозами-на. Содержащиеся в воздухе лаборатории примеси могут поглощаться сорбентами, используемыми для концентрирования и разделения определяемых веществ. По этой же причине фильтровальная бумага и пластинки для ТСХ должны храниться в специальных условиях. Если аналитическая лаборатория расположена вблизи транспортных магистралей или по соседству с промышленными предприятиями, то пылевые и газовые выбросы автомобильного транспорта и технологических установок могут вызвать такое загрязнение образца или пробы, которое на порядок и более превысит истинное содержание определяемого компонента. В таком случае всю лабораторную работу нужно выполнять в специальных помещениях, оборудованных высокоэффективными фильтрами для очистки воздуха Следует заметить, что фильтры предотвращают попадание в воздух лабораторных помещений пыли, но не газообразных веществ ( например, паров ртути или летучих углеводородов). [c.201]

    Необходимо учитьшать особенности биопроб, поскольку предметом исследования могут бьггь жидкости (моча, плазма, сыворотка крови, лимфа), ткани (мыищы, жир, волосы, мозг), органы (печень, почки, легкие, яичники и т.д ), растения, разнообразные пищевые продукты. В частности, работа с мочой требует постоянного контроля за изменением pH, так как он увеличивается со временем из-за действия бак1 рий. Активность последних уменьшают добавлением борной кислоты и антибактериальных препаратов, однако следует учитьшать возмож1Юсть их влияния на результаты определений. Многолетние эксперименты помогли разработать оптимальный вариант процедуры хранения образцов I мл ледяной уксусной кислоты добавляют к 100 мл мочи. Это предохраняет ее от бактериального разложения, а величина pH (3,3 - 4,3) имеет значение, подходящее для большинства аналитических процедур. Однако при определении ртути мочу необходимо подкислять азотной кислотой до pH 1 и ниже [14]. [c.202]

    Холинэстеразы с высокой скоростью гидролизуют холиновые и тиохолиновые эфиры. Возможность аналитического применения холинэстераз обусловлена тем, что их активность в заметной мере зависит от присутствия в растворе токсичных веществ (ингибиторов) [83,84], причем некоторые из них действуют необратимо, а другие - обратимо. К необратимым ингибиторам холинэстераз относятся эфиры фосфорной, фосфо-новой и пирофосфорной кислот, в том числе и фосфорорганические пестициды, многие из которых являются суперэкотоксикангами. Действие этих соединений на холинэстеразы специфично они ковалентно связываются с активным центром фермента и дезактивируют его. Из обратимых ингибиторов интерес представляют ионы ртути, свинца и других тяжелых металлов. Высокая чувствительность холинэстераз к присутствию токсичных веществ обусловливает и область их применения сельское хозяйство, экология, токсикология и др. [c.289]

    Постояннотоковую полярографию можно применять для количественного определения веществ (катионов, анионов, молекул), которые в рабочей области потенциалов ртутного электрода (до —1,8 В, а при использовании солей тетраалкиламмо- ния в качестве фонового электролита — до —2,6 В) вступают в электрохимическую реакцию, на ртути. Для аналитических целей можно применять деполяризаторы в концентрациях 10-2— 0-6 (оптимальная область 10 —10 н.). Относи- [c.292]

    Метод меркуриметрии стал широко применяться в аналитической практике после введения в качестве индикатора нитро-пруссида натрия Ыаг [Ре(СЫ)5Ы0], который с ионом ртути (И) образует белый мелкокристаллический осадок Hg [Ре(СЫ)5М0] (ПР= 1,0- 10- ). [c.234]

    Анализ исследуемого образца. Исходя из при-, мерного процентного содержания тиомочевины в анализируемом объекте (95-97%), рассчитывают навеску образца, необходимую для того, чтобы на ее титрование пошло 2-4 мл стандартного раствора ртути(И), установленного по п. 1. Взвешивают на аналитических весах навеску с массой, близкой к рассчитанной. Количественно переносят ее в стакан с раствором KNO3 (10-12 мл) и титруют так, как описано в п. I. По полученным данным строят кривую титрования, находят объем титранта в точке эквивалентности и рассчитывают массовую долю (%) тиомочевины во взятой пробе. [c.280]

    Способность к образованию тиосоли при взаимодействии с раствором N328 представляет собой другую особенность сульфида ртути, отличающую его от сульфидов других катионов четвертой аналитической группы  [c.289]

    МЕТИЛЕНОВЫЙ СИНИЙ (метиленовая синь, метиленовый голубой) ijHjg INaS — органический краситель, темно-зеленые кристаллы с бронзовым блеском, легкорастворим в спирте, горячей воде, труднее в холодной, М. с. применяют для крашения хлопка, шерсти, шелка. М. с. интенсивно окрашивает некоторые ткани живого организма, поэтому его используют как красящее вещество в микроскопии. М, с. используют в аналитической химии для определения хлоратов, перхлоратов, ртути, олова, титана, при анализе мочи, крови, молока и др, М. с. широко применяют как антидот при отравлениях цианидами, оксидом углерода, сероводородом, нитритами, анилином и его производными. [c.160]

    НЕФЕЛОМЕТРИЯ (греч, nepiiele-облако)—метод количественного определения дисперсности и концентрации коллоидных растворов по интенсивности рассеянного ими света (соответственно приборы — нефелометры). Н. позволяет определять моле гулярную массу полимеров. В аналитической химии Н. определяют незначительные количества ртути, мышьяка, фос([)ора, сурьмы, бария, сульфатов и др. [c.173]

    Т. н. является побочным продуктом в производстве гидросульфита, при очистке промышленных газов от сернистых соединений, в производстве сернистых красителей. Т. и. применяют для приготовления фиксажных растворов, с помощью которых растворяются галогениды серебра, не разложившиеся под действием света на фотокиноотпечатках в текстильной промышленности для связывания остатков хлора после отбеливания тканей в кожевенной промышленности ветеринарии, медицине как противоядие при отравлении цианистоводородной кислотой, иодом, солями тяжелых металлов, мышьяком, ртутью и т. п. в аналитической химии. [c.250]

    Первая аналитическая группа катионов (хлоридная группа) Ag% Pb +, [Hgjl К первой аналитической группе относят катионы серебра, свинца и комплексной ртути Их групповым реактивом является хлористоводородная кислота, которая осаждает эти катионы в виде малорастворимых хлоридов. [c.105]

    Заслуга Р. Бойля в том, что он впервые дал правильное толкование понятию химического элемента. Отрицая понятие элементы перпнатетиков (огонь, вода, воздух, земля) п понятие принципы алхимиков и иатрохимиков (ртуть, сера, соль), Р. Бойль предложил химико-аналитическое определение элемента, которое вписывалось в программу работ хпмиков-аналитиков того периода. Перед химией вставала новая задача — научиться выделять в чистом виде отдельные вещества и устанавливать их состав, т. о. определять, из каких конкретных частей состоит данное тело и каким комплексом физико-химических свойств оно обладает. Для этого предстояло значительно усовершенствовать качественный и количественный анализы, убедиться в воспроизводимости экспериментальных результатов. [c.41]

    К четвертой аналитической груапе относятся катионы меди Си" , кадмия Сдг , ртути(П) висмута(И1) мышьяка Аз и Аз сурьмы и 8Ь , олова 8п и 811 . Сюда же иногда относят и катионы зо-лота(1П) Аи " , таллия(Ш) свинца РЬ " , германия Ое , ванадия молибдена Мо " , вольфрама оения Ке , иридия палладия Рё , платины Р1 . [c.294]

    Фосфаты катионов второй аналитической группы не растворяются в водном аммиаке, как и фосфаты ртути(1), свинца(П), олова(П), yjib-мы(Ш) (8Ь0)зР04. [c.301]

    К третьей аналитической группе относятся катионы меди(П) Си , цинка кадмия Сс1 ртути(П) кобальта(П) Со , никеля(П) Групповой реагент — водный раствор (НН4)2НР04 (или Ма2НР04). При действии группового реагента выпалают осадки фосфатов катионов этой группы, растворимые в водном аммиаке (обычно — 25%-м) с образованием комплексных аммиачных катионов состава [Си(№1з)4] , [2п(КНз)4] (или [2п(МНз)б] ), [Сс1(КНз)4] [Hg(NИз)4] [Со(КНз)б] ", [№(ЫНз)б]  [c.302]

    Другие авторы предпочитают считать групповым реагентом на катионы третьей аналитической грз ппы водный раствор аммиака, ко горый осаждает из растворов, содержащих катионы третьей фуппы, осадки гидроксидов этих катионов состава ( и(0Н)2, Zn(OH),, d(0H)2, Со(ОН)2, Ni(0H)2 и соль ртути HgNH2 l, растворимые в избытке водного аммиака. [c.310]

    К шестой аналитической группе относятся катионы меди(П) Си", кадмия d , ртути(П) Hg , кобальта(П) Со и никеля(П) Ni . Групповым реагентом является 25%-й водный раствор аммиака. При действии группового реагента на водные растворы, содержащие катионы щестой аналитической группы, вначале выделяются осадки различного состава, которые затем растворяются в избытке группового реагента (осадки соединений кобальта и ртути растворяются в избытке водного аммиака [c.323]


Смотреть страницы где упоминается термин Аналитические ртути: [c.267]    [c.286]    [c.291]    [c.95]    [c.215]    [c.216]    [c.171]    [c.171]    [c.289]    [c.28]    [c.137]    [c.244]    [c.92]    [c.314]    [c.321]   
Аналитическая химия. Т.1 (2001) -- [ c.357 , c.407 ]




ПОИСК





Смотрите так же термины и статьи:

Достоверность определения ртут источники аналитических погрешностей

Контроль достоверности аналитической информации по содержанию ртути в природных водах при выполнении экспертизы проекта Катунской ГЭС

Краткая химико-аналитическая характеристика ртути

Краткое руководство по аналитической химии боевых Микрохимические методы определения ртути и проблема ртутной опасности

Физико-химическая и химико-аналитическая характеристика ртути и ее соединений

Четвертая аналитическая группа катионов (ионы серебра, ртути, свинца, меди и висмута)

Четвертая аналитическая группа катионов. Медь, серебро, кадмий, ртуть, свинец, висмут



© 2025 chem21.info Реклама на сайте