Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические свойства комплекситов

    Физико-химические свойства комплекса ПВП — иод, главньш образом ИК- и УФ-спектры, изучались рядом авторов [117, 118, [c.105]

    Инертность или лабильность вовсе не определяются прочностью комплекса. Так, ионы типа Ы1(С1Н)2 , Рс1(СМ)2-, Hg( lN) -лабильны, а соединения типа Со(СН) , Ре(СЫ) , Мо(СМ) инертны. Комплекс Мп(ОЫ) занимает промежуточное положение. Опыт показывает, что равновесие в растворе, содержащем М1(СН) , устанавливается примерно в 10 раз быстрее, чем в растворе Со(СЫ)д , хотя ионы никеля и кобальта очень сходны по их физико-химическим свойствам. Комплексы меди, одновалентные и двухвалентные, в сочетании с С1 , Вг , 50 и ЫНз являются лабильными. [c.337]


    Теория кристаллического поля позволяет объяснить многие физико-химические свойства комплексов (спектры поглощения, магнитные свойства), их геометрическую конфигурацию. Так, наиболее ранним применением ТКП было объяснение магнитных свойств комплексных соединений. Последние определяются величиной Л и энергией спаривания электронов. Вещества, содержащие атомы с неспаренными электронами, парамагнитны (притягиваются магнитом), а вещества, содержащие только электронные пары, диамагнитны (магнитом не притягиваются). [c.382]

    По указанию преподавателя проведите синтез комплексного соединения (см. раздел Синтез неорганических веществ настоящего Практикума). Проведите идентификацию полученного соединения, докажите наличие в нем комплексного катиона или аниона заданного состава. Исследуйте физико-химические свойства комплекса. Определите, какие реагенты разрушают данный комплекс. Сопоставьте результаты вашего исследования с литературными данными. [c.197]

    Константы выделенных комплексов приведены в табл.4. Сравнивать физико-химические свойства комплексов сульфоксидов и комплексов сульфидов с йодом трудно, так как комплексообразование в сульфоксидах, по-видимому, происходит при участии в основном атома кислорода, а не атома серы [9]. [c.82]

    Теория кристаллического поля приближенно рассматривает неорганический комплекс как устойчивую многоатомную систему, в которой влияние лигандов на центральный ион является чисто электростатическим. Наглядно такой комплекс можно представить состоящим из центрального иона-комплексообразователя, окружен- ного точечными ионами или диполями, неподвижно закрепленными в некоторых определенных точках (или совершающих малые колебания вблизи этих точек). В такой модели основной эффект ком-плексообразования должен выражаться в изменении состояний центрального атома при его помещении в поле лигандов. Эти изменения должны нам объяснить все основные физико-химические свойства комплексов. [c.35]

    Стабильность структуры. Особым вопросом при разработке научных основ технологии производства катализаторов является создание структур, повышающих стабильность катализатора. Если стабильность по отношению к ядам является в основном функцией химического состава активных компонентов катализатора, то стабильность поверхности и пористой структуры определяется комплексом физико-химических свойств всех составных, частей катализатора. Эти элементы структуры меняются под влиянием температуры, специфических реагентов (например, водяного пара) или вследствие самого каталитического процесса (каталитическая коррозия). [c.199]


    Эти требования могут удовлетворять масла, обладающие соответствующими физико-химическими свойствами и определенным комплексом эксплуатационных показателей, оцениваемых лабораторными методами и моторными испытаниями на двигателях. [c.117]

    Элементы вектора Гт и элементы матрицы Гф.р также являются функциями состава смеси. Таким образом, комплекс физико-химических свойств потока является функцией температуры, давления и состава смеси  [c.323]

    В последнее время было установлено, что физико-химические свойства многокомпонентных скелетных катализаторов определяются фазовым составом исходных сплавов [28]. Благодаря применению комплекса физико-химических методов исследования удалось дифференцированно изучить роль отдельных факторов и установить их относительный вклад в суммарную активность катализатора. Ниже приведена сводка таких методов, иллюстрирующая сложность корректного решения указанной задачи (по А. Б. Фас-ману)  [c.34]

    На основе системного подхода к задаче проектирования ректификационной установки можно выделить несколько этапов в построении алгоритма решения [55] (рис. 7.16). На первом этапе по заданным параметрам входного потока и агрегатному состоянию питания путем расчета физико-химических свойств смеси обеспечивается информационная полнота комплекса состояния потока питания колонны. Второй этап заключается в определении конструкционных и режимных параметров колонны, обеспечивающих заданную степень разделения по целевому продукту  [c.326]

    Поэтому при проектировании ГАПС необходимо ставить вопрос о минимальной избыточности аппаратов и обеспечении их максимальной универсальности. Разработка таких систем является сложной проблемой, связанной с решением комплекса задач, а именно выбором оборудования и трубопроводов, оптимизацией расписания работы отдельных аппаратов и системы в целом, синтезом маршрутов получения отдельных продуктов, разработкой системы управления, составлением оперативно-производственных планов. Выбор оборудования и трубопроводов представляет большие трудности при ориентации на минимальную избыточность, поскольку, во-первых, ГАПС имеет сложную систему трубопроводов, а транспортные процессы связаны с передачей веществ с различными физико-химическими свойствами и в различных агрегатных состояниях и, во-вторых, универсальность оборудования требует для его изготовления высококачественных конструкционных материалов. К тому же большие проблемы связаны с процессами очистки и переналадки оборудования. Отсюда следует важность выбора соответствующего критерия оценки эффективности работы ГАПС. [c.526]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами первого уровня, существенный вклад вносят эффекты воздействия окружающей среды, т. е. эффекты вышестоящих ступеней иерархии ФХС. Они проявляются в виде кинетических, диффузионных, термодинамических и топологических эффектов типа воздействия активаторов и ингибиторов образования донорно-акцепторных комплексов при радикальной полимеризации сольватации первичных и вторичных солевых эффектов при реакциях между ионами в растворах вырожденной передачи цепи на компоненты среды клеточных эффектов и эффектов близости кинетических изотопных эффектов индуктивных и мезомерных эффектов воздействия на свободные радикалы изменения физико-химических свойств среды влияния макромоле-кулярных матриц, фазовых переходов и т. д. [3, 4, 7, 10—14]. [c.25]

    Следовательно, прежде всего необходимо изучить природу сил, определяющих строение и структуру граничных слоев нефти, а также факторы, определяющие их свойства породообразующих минералов, компонентный состав нефти и ее физико-химические свойства. Такой комплекс исследований дает возможность научно обоснованно выбрать способ воздействия на пласт для рационального использования поверхностных сил в нефтяном коллекторе, создать метод, позволяющий перевести нефть граничного слоя в свободное состояние и тем самым увеличить нефтеотдачу пласта. Итак, основным содержанием физико-химической механики нефтяного пласта является изучение процессов, происходящих на границе раздела жидкостей и газа с породообразующими минералами. [c.4]

    Были исследованы два образца топлива ТС-1, полученные при введении в нефть 30 и 45 г/т ингибитора. Физико-химические свойства обоих образцов топлив и требования ГОСТ 10227—62 к топливу ТС-1 приведены в табл. 1, а данные по оценке эксплуатационных свойств топлив в объеме принятого комплекса методов квалификационных испытаний — в табл. 2. [c.64]


    Поверхностный комплекс при низких температурах обладает определенной прочностью, способностью достаточно длительно присутствовать на поверхности адсорбционно-сольватного слоя, что может привести к увеличению массы топлива (второй вариант), существенному изменению его поверхностной энергии и изменению физико-химических свойств топлива. [c.215]

    Качество товарных присадок оценивают по комплексу методов, включающих определение физико-химических свойств самой присадки (илн раствора ее в масле) и испытание масел с присадками на одноцилиндровых и полноразмерных двигателях, стендах и в эксплуатационных условиях. При производстве присадок контролируют нх вязкость, зольность, щелочность, содержание металлов (бария, кальция, цинка), содержание фосфора, хлора, серы, воды и механических примесей. [c.317]

    Разрушение смазочных материалов в почве и воде может проходить путем химического окисления (под действием окислителей и кислорода воздуха) и биологического разложения. Процессы окисления и биоразложения входят в сложнейший комплекс процессов самоочищения и самовосстановления экосистем, протекающих весьма неоднозначно и никогда не приводящих к возникновению экосистемы, идентичной бывшей до зафязнения [89]. Возможность самоочищения почв от токсичных продуктов различна в зависимости от характера конкретного ландшафта, физико-химических свойств почвы и загрязнений. [c.80]

    Такая последовательность изменения трансактивности может быть подтверждена химическим путем или в результате исследования физико-химических свойств комплексов, содержащих на одной из координат X—Р1—V адденды X различные по силе трансвлияния. [c.103]

    Однако высокая трансактивность аддендов проявляется в многочисленных физико-химических свойствах комплексов. Например, из двух изомеров  [c.181]

    Комплексы, для которых сольватационное равновесие устанавливается достаточно быстро, называют лабильными комплексы же, которые приходят к сольватацион-ному равновесию медленно, называются инертными. Инертность или лабильность вовсе не определяются прочностью комплекса. Так, ионы типа лабильны, а типа Со(СЫ)д , Ре(СМ) -, Мо(СЫ) инертны. Комплекс Мп(СЫ) - занимает промежуточное положение. Опыт показывает, что равновесие в растворе, содержащем устанавливается примерно в 10" раз быстрее, чем в растворе Со(СК) -, хотя ионы никеля и кобальта очень сходны по своим физико-химическим свойствам. Комплексы меди, одновалентные и двухвалентные, в сочетании с С1-, Вг , 50 и МНд лабильны. [c.59]

    Предварительную оценку потенциальных возможностей не — сзтяного сырья можно осуществить по комплексу показателей, входящих в технологическую классификацию нефтей. Однако этих показа — т елей недостаточно для определения набора технологических процес — ( ов, ассортимента и качества нефтепродуктов, для составления материального баланса установок, цехов и НПЗ в целом и т.д. Для этих целей т лабораториях научно-исследовательских институтов проводят тщательные исследования по установлению всех требуемых для проектных разработок показателей качества исходного нефтяного сырья, его узких фракций, топливных и масляных компонентов, промежуточного сырья ддя технологических процессов и т.д. Результаты этих исследо — паний представляют обычно в виде кривых зависимости ИТК, плотности, молекулярной массы, содержания серы, низкотемпературных и нязкостных свойств от фракционного состава нефти (рис.3.3), а также 1 форме таблиц с показателями, характеризующими качество данной нефти, ее фракций и компонентов нефтепродуктов. Справочный материал с подробными данными по физико-химическим свойствам отечественных нефтей, имеюищх промышленное значение, приводится в многотомном издании "Нефти СССР" (М. Химия), [c.92]

    Физико-химические свойства комплекса ПВП — иод, главным образом ИК- и УФ-спектры, изучались рядом авторов 1117, 118, 144, 183—189]. Установлено, что молекулярный иод, присоединяясь к иоливинилпирролидону, вызывает смещение максимума поглощения. В УФ-спектре имеются максимумы в области 290— 295 ммк и 350—370 ммк [117, 183, 184]. Величина абсорбции меняется в зависимости от концентрации полимера. На основании спектрального исследования Остер и Иммергут [21] пришли к заключению, что в комплексе ПВП — иод на 1 моль полимера приходится 0,033 моля молекулярного иода. S-образный характер изотермы комплексообразования указывает на то, что первона-. ально присоединившиеся атомы иода инициируют реакцию вследствие поляризационных эффектов. Предполагается, что связь в комплексе осуш ествляется за счет сил ван-дер-ваальсовского типа. [c.105]

    Захаров В. Ю. Физико-химические свойства комплексов переходных металлов, закрепленных в цеолнтовой матрице. Дне. на соиск. учен, степени канд. хим. наук. М., 1977. [c.200]

    Строение и ИК-сиектры комплексов галогенидов элементов V группы с пиридином описаны в [45]. Получение комплекса ЗгСЬ-Ру описано в [46]. Физико-химические свойства комплекса Вгг-Ру приведены в [47]. [c.63]

    База данных по физико-химическим свойствам веществ и их смесей содержит информацию о физико-химических константах и коэффициентах зависимостей, аппроксимирующих свойства веществ от параметров состояния, а также включает в себя комплекс программ обработки экспериментальных данных и расчета значений физико-химических свойств. Концептуальная модель, заложенная в основу построения БФХС, такова, что практически полностью обеспечивает физическую и логическую независимость данных программного обеспечения. Пользователю системы предоставляется возможность получения разнообразной справочной информации как непосредственно на экране терминала, так и вывода печатных документов в форме ЕСКД. [c.275]

    Физико-химические свойства железоуглеродистых сплавов изменяются еще сильнее при добавлении легирующих компонентов (Сг, Мп, Ni, Со, Ti, W, Мо, Си, Si, В, V, Zr и др.). При этом легирующие элементы вступают во взаимодействие с железом и углеродом и их соединениями с образованием новых металлических и металлоподобных соединений, в результате чего происходит изменение ьсего комплекса механических и физико-химических свойств стали. [c.584]

    С позиций создания АСНИ комплекс задач можно разделить на два класса собственно исследование процессов и ХТС и исследование физико-химических свойств веществ и материалов. [c.57]

    Выделение сернистых соединений и изучение их химического состава представляют значительный интерес. На основании относительно большого количества работ, проведенных к настоящему времени [25, 28, 30, 31, 32, 33, 34], можно утверждать, что сочетание хроматографических и химических методов является пока лучшим способом выделения сернистых соединений. В относительно чистом виде часть сернистых соединений удастся выделить только из ароматической фракции топлив. Сернистые соединения из ароматической части товарных реактивных топлив были выделены и исследованы авторами. Выделенце производилось хроматографическим методом на силикагеле марки АСК, затем фракции подвергались обработке 0,47-молярпым раствором сулемы и через )тутцые комплексы из них были выделены сернистые соединения 117]. Через ртутные комплексы удалось выделить лишь около 50% всех сернистых соединений, содержащихся в ароматических фракциях топлив. Физико-химические свойства выделенных сернистых соединений приведены в табл. 24 .  [c.38]

    Задача выбора оптимального варианта решалась на базе СКДИ ADAR с использованием алгоритма оптимизации с учетом факторов неопределенности [31, 32]. Как уже упоминалось, СКДИ ADAR является многоцелевым программным комплексом интеллектуального типа, предоставляющим исследователю достаточно широкие возможности. При решении задачи использовались все основные прикладные подсистемы СКДИ 1) база данных по физико-химическим свойствам индивидуальных веществ и их смесей (БФХС) 2) база данных по моделирующим блокам (БМВ) 3) автоматизированная подсистема подготовки исходной информации 4) подсистемы технологического и 5) конструкционного проектирования. [c.275]

    Распространенным способом организации информационного обеспечения является концепция банка данных (или систем с базовым языком — по терминологии системного комитета КОДА-СИЛ [36]). Банк данных — это организационно-техническая система, состоящая из комплекса модулей, баз данных, технических средств и обслуживающего персонала, которая обеспечивает неизбыточное хранение и оперативное ведение данных в базах данных, а также независимость прикладных программ от данных. В свою очередь база данных — это нёизВыточная совокупность логически взаимосвязанных данных, которые могут быть использованы более чем для одного приложения (например, данные по оборудованию, по экономике, физико-химические свойства веществ и т.д.). [c.113]

    Элементы вектора состава представляют собой концентрации компонентов смеси потока. Комплекс физико-химических свойств потока является одним из основных параметров, определяющих состояние потока. Он характеризуется тремя матрич- [c.322]

    В перечень локазателей, оцениваемых в соответствии с утвержденным комплексом методов квалификационной оценки автомобильных бенз инов, входят такие физико-химические и эксплуатационные показатели, которые не предписано определять стандартом на автомобильные бензины (ГОСТ 2084—66). Их оценивают дополнительно к стандартным показателям, которым испытуемый образец должен соответствовать. К таким дополиительным показателям, характеризующим физико-химические свойства бензина, относятся плотность и физическая стабильность, а к показателям, характеризующим состав бензина, — содержание механических примесей, выносителя, ароматических и непредельных углеводородов. Остальные дополнительные показатели характеризуют эксплуатационные свойства автомобильного бензина. [c.223]

    Следовательно, разработка и совершенствование методов испытания топлив развивается в направлении более глубокой оценки их эксплуатационных свойств в новых условиях примеиения, определения связанных с ними физико-химических свойств и состава топлива, разработки на их основе специальных квалификационных методов и комплексов этих методов, которые тозволяют быстро оценить пригодность топлива к использованию в двигателе, свести к минимуму применение для этой цели длительных стендовых испытаний и в итоге повысить эффективность эксплуатации техники. [c.225]

    Карбонизация характерна для облагораживания специальных пеков после их формования и отверждения и для нефтяных коксов. При температурах карбонизации наблюдаются интенсивные процессы деструкции, приводящие к увеличению внутренней поверхности вещества, что обусловливает увеличение химической активности кристаллитов кокса при температурах ниже 700 °С часть первичных соединений, находящихся в исходном коксе, ни-тенсивно превращается во вторичные, образуя поверхностные комплексы (см. гл. I). В диапазоне температур 500—1000 °С наблюдается максимум энергетической ненасыщенности кристаллитов кокса, которая способствует повышению в кристаллитах молекулярных напряжений, приводящих к сокращению внешней поверхности, а также к перегруппировке и сближению кристаллитов. Баланс сил, вызывающих увеличение внутренней поверхности и ее снижение в результате межкристаллитных напряжений, обусловливает максимум объемной усадки и внешней поверхности п нитер-вале температур на этапе карбонизации. Физико-химические свойства углерода на этом этапе особенно сильно зависят от скорости его нагрева. В свою очередь, структурные преобразования уменьшают энергетическую ненасыщенность кристаллитов и удельную поверхность углерода. К концу процесса карбонизации энергетическая ненасыщенность и удельная поверхность углерода резко снижаются. [c.192]

    Важным фактором, определяющим комплекс химических и физико-химических свойств синтезируемых полимеров, является их разветвленность, возникающая в результате передачи цепи на полимер. Столкновение активной свободнорадикальной час- [c.228]

    Комплекс физико-химических свойств природных волокнообразующих полимеров обусловлен первичным, вторичным и более высокими уровнями их структурной организации. Каждый из полимеров, представляющий интерес как волокнообразующий (целлюлоза, хитин, фибриллярные белки), имеет определенное биофункциональное назначение. Особенность биосинтетических процессов такова, что первичная структура макромолекул этих полимеров формируется как регулярная, несмотря на возможность случайного включения в них "дефектных" звеньев. Регулярность строения полимерных цепей предопределяет возможность их самоупорядочения (кристаллизации). Параметр гибкости макромолекул природных волокнообразующих полимеров /ф несколько больше 0,63, что позволяет отнести их к полужесткоцепным полимерам. [c.288]

    Существенный вйлад российской науки в исследования физико-химических свойств углерода, высокий уровень отечественных разработок неоднократно отмечался как в России, так и на международном уровне, в частности, на проходившем в мае 2001 года в Москве И Международном симпозиуме по соединениям внедрения. С другой стороны, в цепочке исследователи -разработчики - производители - потребители углеродных материалов все большее значение приобретает последнее звено - потребители углеродной продукции, так как сферы ее применения резко расширяются с развитием и углублением исследований в этой области. Предприятия цветной металлургии, химического, нефтеперерабатывающего и топливно-энергетического комплексов, атомной энергетики, широко использующие материалы на основе углерода и заинтересованные в разработке и внедрении новых материалов, могут стать источником дополнительного внебюджетного финансирования ряда [c.4]


Смотреть страницы где упоминается термин Физико-химические свойства комплекситов: [c.76]    [c.499]    [c.497]    [c.52]    [c.120]    [c.322]    [c.442]    [c.20]    [c.262]    [c.36]    [c.110]   
Комплексообразующие иониты (1980) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Комплекс химический

Комплексы свойства

Физико-химические свойства ЭДА-комплексов



© 2025 chem21.info Реклама на сайте