Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий в иридии

    Содержание окиси углерода в дымовых газах крекинг-установок уменьшают высокотемпературной регенерацией катализатора при 650—700°С с дожитом окиси углерода в двуокись и (или) введением в катализатор добавок, промотирующих дожиг окиси углерода. В качестве промоторов используются ионы редкоземельных металлов (рений, палладий, иридий, платина, родий и др.), способствующие повышению интенсивности горения кокса и обеспечивающие полное сгорание оксида углерода /14/. Высокотемпературная регенерация проводится при [c.34]


    Наименее летучие родий, платина и палладий. Иридий, рутений и особенно осмий дают очень большие потери веса. [c.396]

    Краус, Нельсон и Смит [303] изучали адсорбируемость ионов аммония, щелочных и щелочноземельных металлов, элементов третьей группы, титана и ванадия, палладия, иридия и платины из солянокислых растворов на сильноосновном анионите дауэкс I (с относительно высоким содержанием попереч-. еых связей) при комнатной температуре (25 4 2°). Они установили, что ионы аммония, щелочных и щелочноземельных металлов, алюминия, иттрия и редкоземельных элементов адсорбируются незначительно ионы трехвалентного титана, трех- и четырехвалентного ванадия и скандия адсорбируются слабо из растворов в концентрированной соляной кислоте, а ионы четырехвалентного титана и пятивалентного ванадия в этом случае адсорбируются в значительных количествах. Ион индия адсорбируется в некотором количестве из растворов в 0,5—12 М НС1, а ион трехвалентного галлия адсорбируется очень хорошо. В случае галлия адсорбируемость возрастает при увели- [c.84]

    Платина с палладием, иридием и родием образует непрерывный ряд твердых растворов, удобных для использования в качестве анодных материалов. [c.141]

    На рис. У-1 приведены анодные поляризационные кривые для платины, палладия, иридия и родия и их сплавов с платиной. Поляризационные кривые для палладия, иридия и родия располагаются [c.142]

    На рис. -2 приведены парциальные поляризационные кривые анодного растворения в морской воде чистых металлов платины, палладия, иридия и родия и сплавов платины с палладием, иридием и родием. [c.142]

    Благородные металлы — золото, серебро, платина, палладий, иридий, родий, осмий, рутений. Данный термин используют для характеристики их высокой стойкости к окислению и воздействию афессивных сред. [c.52]

    К первой группе относится восстановление золота (III) до металла гидрохиноном, метолом, /г-аминофенолом и п-фенилендиами-ном 2. Водные растворы этих веществ окисляются на платиновом электроде при потенциале от +0,8 до +1,1 в (Нас. КЭ) на фоне 2 н. серной кислоты, так что титровать можно по току окисления титрующего раствора. Золото (III) при потенциале +1,0 в, при котором ведут титрование, не восстанавливается на электроде, так что кривая титрования имеет форму б. Элементы, часто сопутствующие золоту — селен, теллур, палладий, иридий, рубидий, рутений, — ни на электроде при +1,0 в, ни в растворе этими восстановителями не восстанавливаются и не мешают определению золота. Метод позволяет определять от 3 до 90 мг/л золота в промышленных продуктах. [c.208]


    ПОЗВОЛЯЮТ сделать следующие выводы. Палладий, иридий, родий, рутений, осмий ( ) и серебро, по-видимому, сравнимы в этом отношении с платиной получить не содержащие примесей никель, железо и кобальт труднее, чем платину медь( ) и рений занимают промежуточное положение. Хотя эти выводы основаны на результатах восстановления объемной фазы окислов, аналогичное заключение об относительной реакционной способности справедливо и при рассмотрении взаимодействия между газообразным водородом и хемосорбированным кислородом [39, 53]. [c.309]

    Сравнительные исследования активности контактных веществ, проведенные Реми, показывают, что предопределение активности катализатора будет возможно после выяснения сродства металлов по отношению к кислороду и водороду. Реми считает, что у металлов восьмой группы периодической системы растворимость водорода возрастает в следующем порядке рутений, осмий, платина, родий, кобальт, железо, никель, иридий и палладий, а химическое сродство по отношению к кислороду возрастает в следующем порядке платина, палладий, иридий, осмий, рутений, родий, никель, кобальт и железо. Он предполагает, что если металл стоит в первом ряду на месте, которое предшествует его положению во втором ряду, то после предварительной обработки водородом он приобретает более высокую активность, чем после обработки кислородом, и наоборот. Если металл находится во втором ряду в положении, предшествующем положению в первом ряду, то после предварительной обработки кислородом он становится более активен, чем после обработки водородом. Металлы, окиси которых отличаются высокими теплотами образования, обладают сравнительно малой каталитической активностью. [c.253]

    Серебро, золото, рутений, родий, осмий, палладий, иридий или платина, или их соединения [c.464]

    Серебро, золото, родий, осмий, палладий, иридий или платина или их соединения Азотнокислый никель или его раствор раствор формиата меди смесь азотнокислой меди и азотнокислого марганца [c.542]

    Разложение формальдегида очень небольшое образование окиси углерода с осмием большее образование окиси углерода с родием, рутением, палладием Осмий и рутений, палладий, иридий 2454 [c.91]

    Гидрогенизация угля пол давлением 50 ат Серебро, золото, рутений, родий, осмий, палладий, иридий, платина или их соединения на носителе, окись магния или магнезит 1012 [c.316]

    Особенностью металлов подгруппы платины является то, что они обладают максимальным процентом d-характера металлической связи и незаполненными d-орбиталями. Поэтому металлы семейства платины парамагнитны наиболее парамагнитен палладий, наименее — осмий. Другая важная особенность этих металлов состоит в том, что как гексагональные структуры рутения и осмия, так и плотные кубические решетки родия, палладия, иридия и платины имеют на поверхности треугольные плоскости, удобные геометрически для сорбции шестичленных углеводородных циклов. Кроме того, наименьшие расстояния между атомами этих метал- [c.169]

    Для металлов семейства платины общим являются тугоплавкость, высокие температуры кипения, малый атомный объем, составляющий от 1/7 до 1/5 атомного объема калия. Особенность кристаллической структуры этих металлов состоит в том, что как гексагональные структуры рутения, осмия, так и плотнейшие кубические решетки родия, палладия, иридия и платины имеют на поверхности треугольные плоскости, геометрически удобные для сорбции шестичленных углеводородных циклов. Кроме того, наименьшие межатомные расстояния между атомами этих металлов приблизительно соответствуют расстоянию между атомами Б ненасыщенных связях. Другой важной особенностью металлов платиновой подгруппы является то, что они обладают максимальным процентом -характера металлической связи (решетка их необычайно прочна) и что их d-зона не заполнена. Поэтому металлы семейства платины парамагнитны наиболее парамагнитен палладий, наименее—осмий. [c.999]

    При термическом риформинге реакции сходны с реакциями, проходящими при крекинге газойлей размеры молекул уменьшаются, в то же время получаются олефины и некоторое количество ароматических углеводородов. Каталитический риформинг проводится в присутствии водорода над катализаторами гидрирования — дегидрирования, которые могут быть нанесены на окись алюминия или на алюмосиликат. В зависимости от типа катализатора имеет место определенный ряд реакций, вызывающих структурные изменения в сырье [132—137]. Главными реакциями над никелем и кобальтом являются реакции изомеризации и гидрокрекинга, над М0О7 СгаОз — дегидрирования и дегидроциклизации в то же время платина, палладий, иридий и родий способствуют реакциям дегидрирования, изомеризации, дегидроциклизации и гидрокрекинга. [c.344]

    По механическим свойствам платиновые металлы различаются ааметно. Платина очень мягкая, легко вытягивается в тончайшую проволоку и прокатывается в фольгу. Почти также мягок палладий. Иридий твердый и прочный. Осмий и рутений — хрупкие. Осмий можно раздробить в ступке в порошок. [c.574]

    Свойство. Элементные вещества подгруппы платины - белые блестящие металлы. По механическим свойствам платиновые металлы заметно различаются. Платина очень мягкая, легко вытятвается в тончайшую проволоку и прокатывается в фольгу. Почти такой же мягкий палладий. Иридий - твердый и прочный. Осмий и рутений-хрупкие. Осмий можно раздробить в ступке в порошок. [c.545]


    Благородные металлы — золото, серебро и металлы платиновой группы (платина, палладий, иридий, родий, осмчй и рутений) они характеризуются высоким сопро-тивленирм к коррозии, тугоплавкостью, устойчивостью к окислению при высокой темиературе, См, также Проба благородных металлов. [c.26]

    Исключение составляют идеальные газы, водород, галогены, халько-гены, азот, технеций, рений, рутений, родий, палладий, иридий, осьмий, платина, серебро, золото, медь и ртуть. [c.335]

    Разработана [1360] схема активационного анализа высокочистых материалов (Ве, А1, Ге) на содержание 62 примесей. Золото определяют с чувствительностью 0,003 мкг. Облученный образец растворяют в смеси НС1, НКОд, НВг и Н2304. При этом в осадок выпадают соединения стронция, серебра, бария, тантала, вольфрама в дистиллят переходят соединения мышьяка, селена, брома, рутения, молибдена, олова, сурьмы, теллура, рения, осмия и ртути в растворе находятся остальные элементы. При введении носителя (золота) и действии цинком в среде НС1 или смесью Hg l2 -Ь ЗпС12 в осадок выпадают палладий, иридий, платина и золото. [c.187]

    Катализатором процесса ароматизации являются нанесенные на оксид алюминия металлы VII-VIII группы (платина, палладий, иридий, рений) в определенном сочетании и общим количеством до 0,5-0,6% (мае.), это катализаторы марок КР-106, КР-108 и др. [c.445]

    За исключением некоторых благородных металлов группы Vni (рутения, родия, палладия, иридия и платины) все переходные металлы образуют ряд карбидов и нитридов [43], состав которых соответствует эмпирическим правилам, постулированным Хаагом в 1931 г. Если отношение радиусов атомов неметалла и металла менее 0,59, то образованные соединения имеют простую, с внутренними промежутками структуру [1] в противном случае образуются более сложные структуры. В добавление к таким бинарным соединениям синтезировано несколько полиметаллических карбидов и нитридов, среди которых особый интерес вызывают октаэдрические фазы Новотны [43]. Они содержат два или три переходных металла и представляют собой сложные структуры, многие из которых родственны оксидным структурам, обсуждаемым ранее. Пе-эовскиты карбида и нитрида (см. табл. 9-1), например PtaZn 1], по-видимому, изменяют свойства исходных металлов в объеме, что в свою очередь должно отражаться на химии поверхности данных материалов. [c.122]

    В заключение следует упомянуть еще об одном реактиве — мер-каптохинолине (тиооксине). Этот реактив был применен Ю. И. Усатенко и В. И. Супрунович35 для определения палладия, иридия, меди, а также железа, котороё может быть определено попутно с другими элементами з -зт Подробнее об этом методе см. разделы Иридий и Палладий . [c.206]

    Платина — элемент редкий и в природе находится в рассеянном состоянии. Самородная платина обычно представляет собой естественный сплав с другими благородными (палладий, иридий, родий, рутений, осмий) и неблагородными (железо, медь, никель, свинец, кремний) металлами. Такая платина (ее называют сырой или шлиховой) встречается в россыпях в виде тяжелых зерен размером от 0,1 до 5 мм. Содержание элементной платины в этом природном сплаве колеблется от 65 до 90%. Самые богатые уральские россыпи содержали по нескольку десятков граммов сырой платины иа тонну породы. Такие россыии очень редки, как, кстати и крупные самородки. Сырую платину, подобно золоту, добывают из россыпей промыванием размельченной породы на драгах. [c.221]

    Пригодны золи плапи-ны, палладия, иридия и осп ия Пригодна платиновая чернь [c.268]

    Рентгеноструктурными методами исследования установле--—. но, что в кристалликах платины, палладия, иридия, рутения, меди, кобальта и никеля атомы металла расположены друг от друга на расстоянии от 2,77 до 2,49 стомиллионной доли сантиметра (т. е. от 2,71 до 2,49 ангстрема). Этот промежуток соответствует расстоянию между атомами углерода и водорода в молекулах различных органических соединений. Все эти металлы являются катализаторами для реакций дегидрирования и гидрирования углеводородов. Значит, геометрическое соответствие тоже может помочь исследователям подобрать катализаторы для многих реакций, относящихся к органической химии. [c.17]

    Окись этилена была впервые получена Вюрцем [200] в 1858— 1859 гг. действием едкого кали на этиленхлорпидрин. С тех пор и до настоящего времени этот старый способ получения окиси этилена в принципе сохранил свое значение, несмотря на расходы всегда дефицитного хлора и ряд других недостатков метода. Прямое окисление этилена молекулярным кислородом, несомненно, всегда считалось более выгодным и перспективным. Поэтому химики, начиная уже с Вюрца [201], пытались найти условия осуществления этой прямой реакции. В особенности много попыток в этом направлении было сделано в овязи с общим подъемом каталитических исследований. В качестве катализаторов были испробовапы (в 1906 г. Вальтером) платина, палладий, иридий, никель, медь, серебро и некоторые окислы металлов [202], затем (в 1920 г. Вильштеттером) осмий и серебро [203], а также многие другие катализаторы. [c.347]

    Катализаторами этих реакций служат комплексные соединения титана, ванадия, хрома, марганца, железа, кобальта, никеля, родия, палладия, иридия, рутения. Образование линейных продуктов, как уже говорилось, связано с переносом водорода. Поэтому из указанных катализаторов только кобальт и железо, образующие лабильные гидридные комплексы, ведут реакцию с образованием линейных продуктов н-октатриена-1,3,6 и З-метилгептатриена-1,4,6, тогда как в присутствии остальных катализаторов образуются циклические продукты транс, транс, /иранс-циклододе-катриен, транс, транс, 1(цс-циклододекатриен, циклооктадиен-1,5 и винилциклогексен [21]. [c.233]

    В 1818—1819 гг. сноВ а была апубликоваща большая серия работ Тевара [15, 16], в которой он сообщал о расщеплении открытой им (Перекиси водорода на различных металлах л окислах. Им были Испробованы серебро, медь, золото, платина, железо, цинк, олово, свинец, висмут, осмий, палладий иридий, родий, перекись марганца и другие окислы металлов, а также органические вещества преимущественно белмо вого характера, 1в том, числе клеточные ткаии организмов, я вля(вщ.иеся фактически катализаторами. Тенар тщательно выяснил и разделил случаи распада пер екиси водорода, происходящ ие с окислением соприкасающихся с ее растворами веществ, и случаи, когда агент разложения остается без изменения. [c.24]


Смотреть страницы где упоминается термин Палладий в иридии: [c.699]    [c.432]    [c.274]    [c.381]    [c.6]    [c.37]    [c.292]    [c.143]    [c.19]    [c.221]    [c.420]    [c.529]    [c.242]    [c.427]    [c.187]    [c.173]    [c.493]    [c.25]    [c.60]   
Полярографический анализ (1959) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий-191 и иридий

Палладий

Палладий палладий



© 2025 chem21.info Реклама на сайте