Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Доноры электронов

    Введение металлов, обладающ,их меньшей электроотрицательностью по сравнению с СиО и поэтому действующих как доноры электронов (щелочные или щелочноземельные металлы), повышает активность и снижает селективность. Электронные акцепторы (С1 , SO , S, Р), напротив, увеличивают селективность и уменьшают активность [74, 75]. [c.97]

    Простейший донор электронной пары — гидрид-ион Н". Присоединение отрицательного гидрид-иона к молекуле ВН з приводит 1< образованию сложного (комплексного) иона ВН с отрицательным зарядом  [c.69]


    Из приведенных примеров видно, что при ионизации одна из взаимодействующих молекул — донор электронных пар, другая — их акцептор. [c.121]

    В приведенных реакциях соединения лития выступают в качестве доноров электронных пар — основных соединений, а соединения бора [c.250]

    Понятно, что эта реакция может протекать лишь в неводных средах, например в эфире. Гидрид лития, передавая в комплекс ион Н , выступает как донор электронной пары, а ВН3, присоединяющий гидрид-ион, является акцептором. [c.276]

    При этом основные хлориды (за счет ионов С1") являются донорами электронных пар, а кислотные — акцепторами. Амфотерные хлориды взаимодействуют как с кислотными, так и с основными соединениями. [c.288]

    Соединения Си ( ), Ag (I), Аи (I). Меди и ее аналогам в степени окисления +1 отвечает электронная конфигурация Полагают, что ионы Э могут выступать не только в качестве а-акцепторов, но и я-доноров электронных пар. При этом подвижность -электронных пар в ряду Си (I)—А (I)—Аи (I) возрастает, что определяет усиление в этом ряду способности к я-дативному взаимодействию. [c.624]

    Под нуклеофильной группой понимают ион или молекулу, имеющие заполненную валентную оболочку, которые могут действовать как основание Льюиса, т. е. быть донорами электронов. Наиболее распространенными нуклеофильными реагентами являются ионы С1 , Вг , 1-,0Н , Н0 и молекулы, содержащие О, N5 8. [c.472]

    Определение кислотно-основных свойств с точки зрения переноса электронов было использовано рядом английских авторов [2] для классификации реагентов на нуклеофильные (доноры электронов) и электрофильные (акцепторы электронов). Существует также классификация реакций на такие категории. [c.499]

    Для этих же целей можно пользоваться относительной полярностью ингибиторов (ОПИ), которая характеризует силу адсорбционно-хемосорбционных процессов на положительно или отрицательно поляризованных металлических электродах. Длй анодных ингибиторов (доноров электронов) ОПИ составляет  [c.203]

    Установлено, что относительная степень ионности сульфонатов значительно выше, чем у исходной сульфокислоты. Гидратация сульфонатов увеличивает степень их полярности. Сульфокислоты сорбируются на металле по протонированному водороду и являются акцептором электронов. Лишь наиболее кислые сульфонаты магния и алюминия относятся к числу акцепторов, а сульфонаты всех остальных металлов являются донорами электронов. [c.209]

    В работе [66] приведены экспериментальные данные, свидетельствующие об электронном взаимодействии платины с кислотными центрами носителя, при котором металл играет роль донора электронов. [c.42]


    Известно, что стабилизация платины на поверхности носителя может сопровождаться взаимодействием металла с кислотными центрами носителя, причем платина играет роль донора электронов [66]. Подавление кислотных центров в присутствии натрия должно приводить к уменьшению взаимодействия платины с носителем и увеличению электронной плотности на атомах платины. Результатом ослабления взаимодействия металл — носитель является также облегчение миграции диспергированного [c.48]

    Какой атом или ион служит донором электронной пары при образовании иоиа ВН1  [c.61]

    Стандартные потенциалы металлов ф приведены в табл. 6 в порядке возрастания их алгебраической величины, образуя так называемый ряд напряжений металлов. Если стандартный потенциал металла имеет знак минус, это означает, что металл в паре со стандартным водородным электродом выполняет функцию отрицательного электрода, избыточные электроны которого переходят к ионам Н . При знаке плюс на металле донором электронов являются молекулы водорода, адсорбированные на поверхности платинового электрода. Электроны, переходя на металлический электрод, притягивают из раствора катионы металла, которые, концентрируясь и разряжаясь на его поверхности, сообщают ему положительный заряд. С увеличением алгебраического значения стандартного потенциала металла уменьшаются восстановительные свойства его атомов и увеличиваются окислительные свойства образующихся при этом катионов. Так, цинк по своим восстановительным свойствам превосходит водород, а ионы Н по своим [c.159]

    Свободные элементы энергично реагируют с донорами электронов, образуя отрицательные ионы СР, Вг, Г [c.304]

    Как видно из этих примеров, молекулы НС и HNO3 отдают протоны и поэтому выступают в качестве акцепторов электронных пар, т. е. являются кислотными соединениями. Молекулы же растворителя (воды и аммиака) присоединяют протоны и тем самым выступают в качестве доноров электронных пар, т. е. ведут себя как основные соединения. В результате донорно-акцепторного взаимодействия увеличивается концентрация положительных ионов (ОН — в воде, NH — в жидком аммиаке) по сравнению с чистым растворителем. Сказанное позволяет сформулировать следующее частное определение кислот кислота — это соединение, при растворении которого увеличивается концентрация положительных ионов растворителя. [c.133]

    Понятно, что чем больше отрицательный заряд и меньше размер гниона, тем он более сильный донор электронных пар и тем легче отрывает протон от молекулы воды. Так, по возрастанию прочности юдородиой связи оксоанионы / -элементов HI периода располагаются Е следующий ряд С104< SO4 <Р04 < SiOl.  [c.210]

    Подобным образом ведут себя слабые доноры электронных пар — однозарядные анионы (С1", Вг , Г , N03,0104) к этой же группе анио-1ЮБ относятся ионы SO4, SiFg и другие кислотные остатки сильных кислот. [c.210]

    В качестве амфотерного соединения можно рассматривать гидрид алюминия А1Нз, который в зависимости от партнера по реакции может выступать и как донор электронных пар (основное соединение), и как акцептор (кислотное соединение)  [c.276]

    Сульфит-ион so " имеет структуру тригональной пирамиды с атомом серы в вершине (см. рис. 51, г). Поскольку неподеленная пара атома серы пространственно направлена, ион SO — активный донор электронной пары и легко переходит в тетраэдрические ионы HSO3 и sof. Ион HSOf суш,ествует в виде двух переходяш,их друг в друга изомерных форм  [c.330]

    Вследствие 5р -гнбридизации валентных орбиталей атома азота несвязывающее двухэлектронное облако отчетливо ориентировано в пространстве (см. рис. 50). Поэтому молекула НдЫ — резко выраженный донор электронной пары и обладает высокой полярностью (и, = = 0,49. 10-2  [c.347]

    Гидроксиламин — донор электронной пары образует водородные связи. С водой NH2OH смешивается в любых отношениях. Подобно H3N и H4N2, в воде NHgOH — слабое основание К = 2 10- )  [c.352]

    ЭО4 пособны присоединять молекулы-доноры электронных пар L  [c.593]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    Лучшее доказательство н пользу некоторых из таких специфических пидов взаимодействия получается в результате изучения относительных реакционных способностей замеш енных стиролов и а-метилстиролов с радикалами, имеющими электроноакцситорные группы. Графики, построенные для зависимости этих величин от значений <т Гамметта [65] для замещенных стиролов, например приведенные на рис. 18, показывают возрастающее отклонение от линейной зависимости с увеличением тенденции системы к чередованию наряду с весьма высокими реакционными способностями стиролов, имеющих группы, являющиеся донорами электронов (отрицательные значения). Эти свойства, по-видимому, характеризуют системы, 1 которых участие дополнительных резонансных структур понижает энергию переходного состояния [65, 101а]. [c.152]


    Из этих данных видно, что, как и можно было ожидать, группы, являющиеся донорами электронов, увеличивают реакционную способность, тогда как группы акцепторы электронов делают олефшг практп- [c.159]

    Наиболее реакционноспособны те диенофилы, в которых двойная связь сопряжена с одной или несколькими группами, являющимися хильными донорами электронов. Одним из наиболее реакционйосиособ- [c.176]

    Чтобы лучше понять природу катализа, необходимо рассмотреть одну важную обш ую реакцию дикобальтоктакарбонила. Найдено [29], что дикобальтокарбонил в присутствии основания (представляющего по Льюису потенциальный донор электронов) с низкими пространственными уровнями претерпевает реакцию внутреннего окисления — восстановление или диспропорционирование. [c.291]

    Атом кислорода, введенный в боковую цепь фторолефина, имеет две неподеленные свободные электронные пары, является донором электронов, соответственно увеличивает плотность л-элек-тронов двойной связи и повышает ее реакционную способность в реакциях сополимеризации с фторолефинами при этом в составе сополимеров возрастает содержание перфторалкоксиолефинов. [c.507]

    Как указывалось на стр. 123, такая электронная структура атома кислорода обусловливает большие энергетические затраты на распариваппе его элект )онои, не компеисируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода, как иравило, равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентн1,1е связн но донорно-акцепторному способу. [c.373]

    Выступая в качестве донора электронной пары, атом азота может участвовать в образовании по донорно-акцепторному способу четвертой ковалентной связи с другими атомами или ионамн, обладающими электронно-акцепторными свойствами. Этим объясняется чрезвычайно характерная для аммиака способность вступать в реакции присоединения. [c.401]

    В молекуле аммиака атом азота находится в состоянии 5/> -гиб-риднзации, причем на одной из его гибридных орбиталей находится неподеленная электронная пара. Поэтому при донорноакцеиторном взаимодействии молекулы NH3 с ионом Н+ образуется ион NH i имеющий тетраэдрическую конфигурацию. Аналогично построен комплексный ион BF ]- здесь донором электронной пары служит анион р-, а акцептором — атом бора в молекуле ВРз, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комнлексообразовании в состояние sp -гибридизацни. [c.598]

    Соединение, которое, подобно BFj, способно присоединять (акцептировать) электронную пару, называется льюисовой кислотой, а всякий поставщик (донор) электронной пары называется льюисовым основанием. Эта терминология вслед за описанной в гл. 5 терминологией Бренстеда призвана еще больше расширить простую теорию кислот и оснований Аррениуса. Согласно теории Аррениуса, кислота представляет собой вещество, образующее в водном растворе ионы водорода, или протоны, а основание-вещество, образующее гидроксидные ионы. Терминология Бренстеда обладает большей общностью кислотой является любое вещество, способное быть донором протонов, а основанием - вещество, способное поглощать (акцептировать) протоны. Чтобы проиллюстрировать различия всех трех систем определений, рассмотрим реакцию нейтрализации между НС1 и NaOH  [c.474]

    С точки зрения Аррениуса, НСГкислота, а NaOH-основание. С точки зрения Бренстеда, кислотой является ион HjO , а основанием-гидрок-сидный ион (ОН ), поскольку именно эти частицы обмениваются протоном. С точки зрения Льюиса, кислотой является сам протон, поскольку он взаимодействует с неподеленной парой электронов гидроксидного иона гидроксидный ион является донором электронной пары и, следовательно, основанием  [c.474]

    Льюисова кислота представляет собой акцептор электронной пары (например, BF3) льюисово основание - это донор электронной пары (нанри-.мер, iNHj). [c.502]

    СЯ для образования ковалентных связей в кристаллической структуре кремния, у фосфора остается еще один электрон. При наложении на кристалл электрического поля этот электрон может смещаться в сторону от атома фосфора поэтому говорят, что фосфор является донором электронов в кристалле кремния. Для высвобождения донируемых электронов требуется лищь 1,05 кДж моль эта энергия превращает кристалл кремния с небольшой примесью фосфора в проводник. При введении в кристалл кремния примеси бора возникает противоположное явление. Атому бора недостает одного электрона для построения необходимого числа ковалентных связей в кристалле кремния. Поэтому на каждый атом бора в кристалле кремния приходится одна вакансия на связывающей орбитали. На эти вакантные орбитали, связанные с атомами бора, могут быть возбуждены валентные электроны кремния, что дает возможность электронам свободно перемещаться по кристаллу. Подобная проводимость осуществляется в результате того, что на вакантную орбиталь атома бора перескакивает электрон соседнего атома кремния. Вновь образовавшаяся вакансия на орбитали атома кремния тут же заполняется электроном со следующего за ним другого атома кремния. Возникает каскадный эффект, при котором электроны перескакивают от одного атома к следующему. Физики предпочитают описывать это явление как движение положительно заряженной дырки в противоположном направлении. Но независимо от того, как описывается это явление, твердо установлено, что для активации проводимости такого вещества, как кремний, требуется меньше энергии, если в кристалле содержится небольшое количество донора электронов типа фосфора либо акцептора электронов типа бора. [c.632]

    ПЛОТНОСТИ я-орбитали находится между атомами С и N. а не в направлении к атому металла. Гораздо сильнее взаимодействует с уровнем 2д металла разрыхляющая я -орбиталь (рис. 20-16,6). Однако в этом случае эффект обратен тому, который наблюдался для лиганда С1 . Электроны на Сзд-орбиталях металла получают возможность частично делокализоваться и переместиться на я -орбиталь лиганда. Такая делокализагшя стабилизирует 2д-орбиталь, т. е. понижает ее энергию. В результате возрастает энергия расщепления, Д . Этот эффект представляет собой я-взаимодействие металла с лигандом, или М - Ь-я-взаимодействие нередко его пазы вают еще дативным я-взаимодействием. Лиганды, повышающие расщепле ние уровней указанным образом (СО, СЫ , N0 ), пользуясь терминоло гией теории кристаллического поля, называют лигандами сильного поля Одноатомные лиганды с несколькими неподеленными парами электронов как, например, галогенидные ионы, являются лигандами слабого поля, по тому что они играют роль доноров электронов. Связанные группы атомов наподобие СО скорее относятся к лигандам сильного поля, потому что их связывающие я-орбитали сконцентрированы между парами атомов и удалены от металла, тогда как пустые разрыхляющие молекулярные орбитали простираются ближе к металлу. [c.237]

    В статье [J. Amer. hem. So .. 97, 6714 (1975)] исследуют ряд квадратно-пирамидальных комплексов железа(П1) с набором N4S донорных атомов (сера — аксиальный донор). Электронная структура этих комплексов сильно [c.311]


Смотреть страницы где упоминается термин Доноры электронов: [c.68]    [c.133]    [c.353]    [c.370]    [c.500]    [c.211]    [c.215]    [c.373]    [c.62]    [c.217]    [c.379]    [c.528]   
Органикум. Практикум по органической химии. Т.2 (1979) -- [ c.202 ]

Органическая химия (1979) -- [ c.76 ]

Краткий курс физической химии Изд5 (1978) -- [ c.58 , c.68 ]

Теории кислот и оснований (1949) -- [ c.215 , c.259 ]

Введение в электронную теорию органических реакций (1965) -- [ c.67 ]

Общий практикум по органической химии (1965) -- [ c.122 ]

Органическая химия (1972) -- [ c.288 , c.311 ]

Как квантовая механика объясняет химическую связь (1973) -- [ c.0 ]

Органическая химия (1972) -- [ c.288 , c.311 ]

Органическая химия Издание 2 (1976) -- [ c.295 , c.318 ]

Органическая химия Издание 3 (1980) -- [ c.271 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.60 ]

Теоретические основы органической химии Том 2 (1958) -- [ c.549 ]




ПОИСК





Смотрите так же термины и статьи:

Донор

Донор электронных пар



© 2024 chem21.info Реклама на сайте