Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбиталь лигандов

Рис. 20-15. Снижение энергии расщепления кристаллическим полем в результате я-взаимодействия металл-лиганды. Неподеленные пары электронов на тс-орбиталях лигандов С1 " отталкивают электроны, находящиеся на d -, и -орбиталях металла Рис. 20-15. <a href="/info/995813">Снижение энергии</a> <a href="/info/389782">расщепления кристаллическим полем</a> в результате я-<a href="/info/1038618">взаимодействия металл-лиганды</a>. <a href="/info/9258">Неподеленные пары электронов</a> на тс-<a href="/info/134559">орбиталях лигандов</a> С1 " <a href="/info/756735">отталкивают электроны</a>, находящиеся на d -, и -орбиталях металла

    Теория поля лигандов (метод МО ЛКАО). Теория МО ЛКАО получила в химии координационных соединений название теории поля лигандов. В методе МО ЛКАО принимают, что электроны движутся в поле, создаваемом лигандами и центральным ионом. Молекулярную орбиталь гр можно представить как линейную комбинацию АО центрального иона (хг) и атомных орбиталей лигандов (хь ) = =Можно рассматривать линейную комбинацию АО лигандов как одну так называемую групповую орбиталь Тогда искомая МО примет вид Групповая орбиталь ли- [c.125]

    Пространственная структура комплексных частиц может быть объяснена с позиций метода валентных связей (метод ВС). Этот метод предполагает, что комплексная частица возникает в результате образования ковалентных связей между комплексообразователем и лигандами. При этом ковалентная а-связь образуется в результате перекрывания вакантной орбитали атома (или иона) комплексообразователя (акцептора) с заполненными, т. е. содержащими не-поделенные пары электронов, орбиталями лигандов (доноров). Максимальное возможное число с-связей определяет координационное число комплексообразователя. [c.209]

    Каждая из указанных гибридных орбиталей может перекрываться с орбиталью лиганда с образованием связывающей и разрыхляющей орбита-лей, имеющих а-симметрию относительно оси связи между металлом и лигандом. Неподеленная пара электронов от каждого лиганда занимает возникающую связывающую молекулярную орбиталь, и в результате образуются шесть ковалентных связей (рис. 20-8). Аналогичные соображения поясняют образование четырех эквивалентных гибридных орбиталей, направленных к вершинам квадрата в плоскости ху, из р - и [c.225]

    Теория поля лигандов рассматривает лиганды не просто как заряженные сферы, а как частицы, имеющие свои собственные орбитали. Согласно представлениям метода делокализованных молекулярных орбита-лей, шесть орбиталей лигандов, которые в первом предположении имеют симметрию а-типа относительно линий связи металл—лиганд, образуют комбинации с шестью из девяти р- и -орбиталей металла, а именно с орбиталями (1 2 5, р Ру и р . Это как раз те же орбитали, которые Полинг использовал для конструирования шести гибридных орбиталей. Составим из них комбинации с шестью атомными орбиталями лигандов при этом мы получим шесть делокализованных связывающих орбиталей и шесть разрыхляющих орбиталей (рис. 20-14). Орбитали и сим- [c.233]

    Каждая из трех орбиталей уо-типа может перекрываться с орбиталями лигандов, расположенных по оси вытянутости гантели. Это отвечает образованию трехцентровых трех связывающих и трех разрыхляющих ар-орбиталей (а7, и [c.511]


    Если же в л-взаимодействии участвуют орбитали лигандов, энергетически более низкие, чем у-, и -г-орбитали, то Д становится меньше величины, характерной для комплексов с одними лишь ст-связями (рис. 217, б). Подобный случай характерен при участии занятых электронами р- или л -орбиталей лигандов. При образовании лр зр -орбиталей комплекса некоторая часть электронной [c.515]

    Если совокупности и е -орбиталей в октаэдрических комплексах ионов переходных металлов имеют равные заселенности в компонентных орбиталях, то квадрупольное расщепление равно нулю. Низкоспиновые комплексы железа(П) (tfg) не дают квадрупольного расщепления, если только не снимается вырождение, и эти орбитали могут взаимодействовать различным образом с молекулярными орбиталями лиганда. В то же время высокоспиновый комплекс железа(П) не [c.293]

    По энергетическим соображениям участием х-орбиталей лигандов можно пренебречь. [c.516]

    Правильное решение дает теория молекулярных орбиталей МО координационной связи образуется путем комбинации наличных з-, р-или -орбиталей лиганда и металла, обладающих подходящими энергиями и симметрией, а особые свойства переходных элементов возни- [c.19]

    Т а2 0Н2 -у Групповая орбиталь лигандов. 1 4, также положительна  [c.126]

    В этом случае при описании комплекса методом МО d- и р-орбитали могут смешиваться. Вклад р-орбиталей основного и возбужденного состояний сообщает в некоторой степени разрешенный характер d - р-переходу, и интенсивность его увеличивается. Смешивание в нецентросимметричных молекулярных орбиталях лигандов также приводит к увеличению интенсивности полос. Поэтому, как можно видеть из рис. 10.21, где представлена зависимость е/5 от X, для различных структур получаются различные спектры. Ожидается, что в спектре комплекса (см. рис. 10.20) будут наблюдаться три полосы v,, Vj и Vj, соответствующие трем спин-разрешенным переходам T (F) Vj Tj(F) -> [c.103]

    Б связь М — Ь направлена вдоль оси х, а-орбиталь лиганда ортогональна Рг (перекрывание равно нулю), и поскольку радиальная составляющая не меняется, то угловой член Р становится нулевым. Подставляя уравнение (10.30) в уравнение (10.28), получаем [c.113]

    Из предыдущего обсуждения должны стать довольно понятными два момента. Изотропные сдвиги имеют важное значение для понимания электронной конфигурации металла в комплексе, по они мало используются для получения информации относительно деталей связывания металл — лиганд. При интерпретации протонных контактных сдвигов не обойтись без использования молекулярных орбиталей комплекса или, при приближенном подходе, орбиталей лиганда. [c.180]

    Константы взаимодействия для одного неспаренного электрона, находящегося на различных орбиталях лигандов тина пиридина  [c.183]

    Что же касается орбиталей йху-, d, г и г-типа, то, поскольку их лепестки вытянуты по биссектрисам углов, с орбиталями лигандов они не комбинируются (рис. 213). В октаэдрических комплексах без я-связывания они играют роль одноцентровых несвязывающих орбиталей, локализованных при центральном атоме. Их обозначают [c.511]

    Поскольку каждая орбиталь лиганда несет два электрона, а ион Со + имеет шесть валентных электронов, мы должны разместить эти 18 валентных электронов на имеющихся уровнях, следуя принципу запрета Паули и правилу Гунда. [c.20]

    Из сопоставления рис. 1.7 и 1.63 следует также, что /г -орбита-ли металла не могут перекрываться по а-типу с орбиталями лигандов орбитали tig могут перекрываться по я-типу с теми орбиталями лигандов, которые обладают подходящей для этого симметрией. Многие лиганды (в частности, NH3, Н2О, галогенид-ио-ны) не имеют таких орбиталей с энергией, близкой к энергии гг Орбиталей центрального атома. Между такими лигандами и центральным атомом не образуется я-связей. [c.128]

    Обозначение МО АО металла Групповая орбиталь лигандов  [c.128]

    В рассмотренных комплексах мы встречаемся с особым видом донорно-акцепторной связи, когда комплексообразователь является одновременно и акцептором (принимает неподеленную пару лиганда) и донором (поставляет свои -электроны на орбиталь лиганда). Связь, образованную заполненной электронами орбиталью центрального атома и свободной орбиталью лиганда, называют дативной связью. [c.130]

    Три 4р-орбитали эквивалентны так же, как и все сг-орбитали. Поэтому связывающие г з(о г)-, Ф(яу)- и г з(о2)-орбитали также эквивалентны, т. е. возникает трехкратное вырождение. (Символ этих орбиталей в теории групп Им соответствуют и трижды вырожденные разрыхляющие орбитали ilu). Из Зй-орбиталей в октаэдрическом поле комбинируют с орбиталями лигандов только две (см. рис. 54 и 58). Орбиталь перекрывается только с четырьмя о-орбиталями, лежащими в одной плоскости по осям X и у  [c.126]

    На рис. 212, а, 6 показаны возможные комбинации ст-типа валентных орбиталей центрального атома и отвечающие им по симмет рии сочетания орбиталей лигандов. Если совместить изображения соответствующей орбитали центрального атома и изображение орбиталей лигандов, то возникает картина их перекрывания. Как видно, на рис. 212, 5-орбиталь комплексообразователя благодаря сферической симметрии одинаково перекрывается с орбиталями каждого из шести лигандов, расположенных по осям октаэдра. Это приводит к образованию семицентровых связывающей и разрыхляющей молекулярных о -орбиталей (о/ и о р р). [c.511]


Рис. 20-14. Описание электронного строения комплексов с октаэдрической координацией в рамках теории делокализованных молекулярных орбиталей. Те же шесть орбиталей металла, которые использовались в теории ва-лентньгх связей у2, с1 2, з, р , р и р.). теперь взаимодействуют с шестью орбиталями лигандов, на которых находятся неподеленные электронные пары, в результате чего образуются шесть связывающих молекулярных орбиталей (одна а три ст и две ст ) и шесть разрыхляющих орбиталей (а , Рис. 20-14. <a href="/info/1483687">Описание электронного строения</a> комплексов с <a href="/info/167764">октаэдрической координацией</a> в <a href="/info/1478537">рамках теории</a> делокализованных <a href="/info/1199">молекулярных орбиталей</a>. Те же шесть <a href="/info/68278">орбиталей металла</a>, <a href="/info/1768031">которые использовались</a> в теории ва-лентньгх связей у2, с1 2, з, р , р и р.). теперь взаимодействуют с шестью <a href="/info/134559">орбиталями лигандов</a>, на <a href="/info/1597898">которых находятся</a> <a href="/info/9258">неподеленные электронные пары</a>, в результате чего образуются шесть связывающих <a href="/info/1199">молекулярных орбиталей</a> (одна а три ст и две ст ) и шесть разрыхляющих орбиталей (а ,
Рис. 213. di -Орбиталь центра.чьного атома и сочетание орбиталей лигандов Рис. 213. di -Орбиталь центра.чьного атома и сочетание орбиталей лигандов
Рис. 216. А -Орбиталь центрального атома (а) и отвечающие ей по симметрии сочетания р- (б) и празр- (а) орбиталей лигандов, соответствующие образованию молекулярных я-орбиталей октаэдрического комплекса Рис. 216. А -<a href="/info/1070778">Орбиталь центрального</a> атома (а) и отвечающие ей по <a href="/info/1216054">симметрии сочетания</a> р- (б) и празр- (а) <a href="/info/134559">орбиталей лигандов</a>, соответствующие <a href="/info/278028">образованию молекулярных</a> я-<a href="/info/70912">орбиталей октаэдрического</a> комплекса
    Орбитали лигандов, способные к я-перекрыванию, — это, например, р- и -атомные орбитали или молекулярные я= - и яр р-орбитали двухъядерных молекул. На рис. 216 показгны сочетания орбиталей лигандов и J .г-opбитaль центрального атома, которые по условиям симметрии могут комбинироваться с образованием молекулярных я-орбиталей. Аналогичным образом могут комбинироваться а г-орбиталь И сочетанив молекулярных я -орбиталей и атомных -орбиталей, а также сочетания других типов орбиталей лигандов. [c.514]

    Участие (1x1,-, уг гг-орбиталей в построении л-орбиталей приводит к изменению величиньГ А. В зависимости от соотношения энергетических уровней орбиталей центрального атома и комбинируемых с ними орбиталей лигандов величина Д может увеличиваться или уменьшаться. Как видно, на рис. 217, а. [c.515]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    ПЛОТНОСТИ я-орбитали находится между атомами С и N. а не в направлении к атому металла. Гораздо сильнее взаимодействует с уровнем 2д металла разрыхляющая я -орбиталь (рис. 20-16,6). Однако в этом случае эффект обратен тому, который наблюдался для лиганда С1 . Электроны на Сзд-орбиталях металла получают возможность частично делокализоваться и переместиться на я -орбиталь лиганда. Такая делокализагшя стабилизирует 2д-орбиталь, т. е. понижает ее энергию. В результате возрастает энергия расщепления, Д . Этот эффект представляет собой я-взаимодействие металла с лигандом, или М - Ь-я-взаимодействие нередко его пазы вают еще дативным я-взаимодействием. Лиганды, повышающие расщепле ние уровней указанным образом (СО, СЫ , N0 ), пользуясь терминоло гией теории кристаллического поля, называют лигандами сильного поля Одноатомные лиганды с несколькими неподеленными парами электронов как, например, галогенидные ионы, являются лигандами слабого поля, по тому что они играют роль доноров электронов. Связанные группы атомов наподобие СО скорее относятся к лигандам сильного поля, потому что их связывающие я-орбитали сконцентрированы между парами атомов и удалены от металла, тогда как пустые разрыхляющие молекулярные орбитали простираются ближе к металлу. [c.237]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    Возможно также, что в комплексе неспаренный электрон, находящийся на МО IV, спин-поляризует МО III (в которую некоторый вклад дает л-орбиталь лиганда) — заполненную МО, представляющую собой по существу Г -орбиталь металла. Электрон с тем же самым спином, что и на орбитали находится главным образом на металле, а электрон с противоположно направленным спином находится главным образом на части л -МО, которая в основном является МО лиганда. Неспаренный спин в результате этих двух косвенных взаимодействий делокализован в л-системе лиганда, но на г, - (в основном орбитали металла) и на ЛL-мoлeкyляpнoй орбитали (в основном орбитали лиганда) комплекса плотность неспаренного электрона отсутствует. Далее мы будем использовать термин спиновая плотность для обозначения неспаренного спина, обусловленного либо прямым, либо косвенным взаимо- [c.178]

    Из проведенного выше обсуждения видно, что метод МО можно непосредственно использовать для интерпретации механизмов делокализации спинов в комплексе и для качественного описания этим же методом лиганда. В последнем случае мы будем интерпретировать спектр, исходя из молекулярных орбиталей лиганда и электронной конфигурации металла для соответствующей симметрии комплекса, и будем пытаться установить, какие молекулярные орбитали лигандов смешиваются с молекулярными орбиталями металла или какие из первых спин-по-ляризованы. [c.179]

    Определив константы взаимодействия для одного неспаренного электрона на каждой из нескольких орбиталей лиганда, можно рассчитать неспаренный спин, делокализованпый на каждой из этих орбиталей в комплексе. Для этого мы составляем совместные уравнения с учетом наблюдаемых констант взаимодействия для орто- и пара-протонов комплекса 4-метилпиридина. В качестве примера можно взять уравнения для комбинаций а-донорной и я-разрыхляющей орбитали, необходимых для объяснения скалярных сдвигов в шестикоординационных комплексах никеля(П). [c.182]

    Предыдушее обсуждение строилось на использовании параметров Р и значения которых в комплексе ниже по сравнению со значениями в свободных ионах. В другом аналогичном подходе [20, 24] используются коэффициенты молекулярных -орбиталей из орбиталей металла и лиганда, например, для симметрии если пренебречь точной формой орбиталей лиганда, можно получить следующие одноэлектронные орбитали  [c.230]

    В обоих случаях, для СО и для С2Н4, переход двух электронов лиганда к <т-связи более или менее компенсируется обратной передачей двух электронов металла я-связи, так что результатом является частичный переход электронов от связывающих к разрыхляющим орбиталям лиганда с ослаблением связи С—О или С—С. [c.22]

    Наиболее строгое объяснение природы связи в комплексных соединениях достигается применением метода молекулярных орбиталей. Этот метод значительно сложнее теории кристаллического поля расчет энергии связи в комплексных соединениях по методу МО требует использования мощных вычислительных машин. По теории кристаллического поля расчеты несравненно проще, и ею нередко пользуются при рассмотрении объектов, к которым она не вполне применима, для получения ориентировочных оценок. Для комплекса волновая функция молекулярной орбитали фмо представляет собой линейную комбинацию, состоящую из волновых функций орбитали центрального атома металла фм и групповой орбитали лигандов 2сфь (линейная комбинация определенных орбиталей лигандов)  [c.127]

    Соиоставляя-данные табл. 1.14, рис. 1.63 и рис. 1.7, легко заметить, что в групповую орбиталь входят лишь те орбитали лигарщов, которые перекрываются по а-типу с соответствующей орбиталью металла. Так, s-орбиталь металла одинаково перекрывается с орбиталями всех шести лигандов, р с-орбиталь перекрывается только с орбиталями лигандов 1 и 3 и т. д. [c.128]

    Поступление электронов металла на разрыхляющую орбиталь лиганда делает менее прочной связь между атомами, из которых состоит лиганд. Это можно обнаружить экспериментально. Изучение молекулярных спектров и определение структуры соединений позволяют найти расстоянне между атомами Го и силовую константу связи k. Чем меньше Го и больше к, тем прочнее связь. Было обнаружено, что связь С =0+ в карбонилах длиннее и k имеет меньшее значение, чем в свободном СО. Так, для молекулы СО величины Го и й составляют 113 пм и 1902 Н/м, а для связи С =0+ в Ni( O)4 они равны 115 пм и 1620 Н/м. [c.130]


Смотреть страницы где упоминается термин Орбиталь лигандов: [c.511]    [c.515]    [c.225]    [c.226]    [c.233]    [c.235]    [c.239]    [c.96]    [c.97]    [c.175]    [c.175]    [c.176]    [c.177]   
Теоретическая неорганическая химия (1969) -- [ c.266 ]

Теоретическая неорганическая химия (1969) -- [ c.266 ]

Теоретическая неорганическая химия (1971) -- [ c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Аспекты симметрии d-орбитали, расщепляемой лигандом

Влияние лигандов на энергии d-орбиталей

Лигандов орбитали Орбитали

Лигандов орбитали Орбитали

Лигандов орбитали Орбитали гандов

Лиганды пятикратно вырожденных орбиталей

Лиганды различной симметрии, расщепление пятикратно вырожденных орбиталей

МО координационных соединений с лигандами, имеющими р- и п-орбитали

Метод молекулярных орбиталей (теория поля лигандов)

Описание связей в комплексных соединениях в тео рии поля лигандов и в методе молекулярных орбиталей

Орбитали групповые лигандов

Применение теории молекулярных орбиталей для описания электронного строения координационных соединений. Теория поля лигандов

Свойства симметрии d-орбиталей в полях лигандов

Теория кристаллического поля, теория поля лигандов и теория молекулярных орбиталей

Теория молекулярных орбиталей (теория поля лигандов)

Теория молекулярных орбиталей поля лигандов

Теория поля лигандов (или делокализованных молекулярных орбиталей)

Экспериментальные доказательства перекрывания орбиталей металла и лигандов



© 2025 chem21.info Реклама на сайте