Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк строение

    Опишите строение неметаллических и металлических модификаций азота, фосфора, мышьяка, сурьмы и висмута. [c.73]

    Строение внешней электронной оболочки атома Азот Фосфор Мышьяк Сурьма Висмут [c.427]

    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р--=К 1п. Поэтому проводимость таких примесных полупроводников п-типа осуществляется в основном за счет свободных электронов в зоне проводимости. Если же атомы примеси резко увеличивают число дырок в валентной зоне, то растет дырочная проводимость и соответственно уменьшается число свободных электронов п = Кз/р- Такого рода примеси называются акцепторами электронов, а полупроводники с дырочной проводимостью — полупроводниками /7-типа. Акцепторами электрона для германия служат атомы галлия. В присутствии примесей соотношение (28.2) в объеме полупроводника уже не остается справедливым. Вместо него следует записать [c.141]


    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р = Поэтому [c.150]

    Фосфор, мышьяк или сурьма (имеющие электронное строение внешнего энергетического уровня s pЗ и проявляющие валентность 5), будучи введенными в кристаллические решетки германия или олова (электронное строение внешнего уровня 5 р валентность 4) ведут себя как донорные примеси, т. е. отдают электроны и создают проводимость п-типа. Если же в германий или кремний ввести бор, алюминий, галлий или индий (электронное строение внешнего уровня 5 р, валентность 3), то атомы примеси захватывают четвертый электрон и полупроводник обнаруживает проводимость р-типа. [c.186]

    Больщинство известных химических элементов, находясь в виде простых веществ, представляют собой металлы. Некоторые элементы (германий, мышьяк, сурьма, алюминий) в одних условиях ведут себя как металлы, в других условиях — как неметаллы. Все металлы имеют на внешнем энергетическом уровне небольшое число валентных электронов — электронные конфигурации металлов представлены в табл. I. Повторение химических свойств металлов обусловлено периодическим повторением строения электронных конфигураций внешних электронных уровней. [c.317]

    На рис. 48 схематично изображено строение коллоидной частицы и мицеллы сульфида мышьяка. [c.136]

    Фосфор и мышьяк — элементы пятой группы периодической системы, аналоги азота. Между органическими соединениями всех трех элементов наблюдается поэтому определенное сходство. Это проявляется, в частности, в сходстве строения соответствующих соединений азота, фосфора и мышьяка  [c.253]

    Стереохимия соединений, пространственное строение которых вытекает из стерических особенностей атомов кремния, фосфора, мышьяка, серы, бора — быстро развивающаяся область стереохимии. Ее полное освещение потребовало бы отдельной большой книги, поэтому данная глава является лишь введением в эту обширную область. [c.602]

    Фосфор и мышьяк — элементы пятой группы периодической системы элементов Д. И. Менделеева, аналоги азота. Определенное сходство наблюдается н между органическими производными этих элементов. Оно проявляется в сходстве строения, например  [c.345]


    Элементы подгруппы азота. Строение их атомов и химическая характеристика. Простые вещества азот, фосфор, мышьяк, сурьма, висмут. Их получение. [c.250]

    В зависимости от того, построены ли макромолекулы неорганических полимеров из атомов одного или различных элементов, они называются соответственно гомоцепными и гетероцепными полимерами. Представители первых—селен и теллур цепочечного строения, а также модификации черного фосфора и мышьяка, имеющие слоистые решетки (гл. IV, 5). Типичные гетероцепные полимеры — аморфные двуокись кремния и поликремниевая кислота, природные и синтетические силикаты, полифосфорные кислоты, полифосфаты  [c.392]

    По строению атомов (п. 4) можно судить, что элементы этой аналитической группы будут проявлять неметаллические свойства, которые усиливаются в ряду Sn—Sb—As. Очевидно, наибольшее сходство химических свойств будет у мышьяка и сурьмы как у элементов, находящихся в одной группе периодической системы Д. И. Менделеева. [c.274]

Рис. 49. Кривые атомного рас- Рис. 50. Схема строения одного из слоев серого пределения жидкого азота [37] мышьяка или черного фосфора [36] Рис. 49. <a href="/info/391299">Кривые атомного</a> рас- Рис. 50. <a href="/info/325342">Схема строения</a> одного из <a href="/info/1163501">слоев серого</a> пределения <a href="/info/15378">жидкого азота</a> [37] мышьяка или черного фосфора [36]
    В табл, 32 сопоставлены прямые и косвенные сведения о строении простых жидкостей вблизи точки плавления при невысоких давлениях. Сплошной штриховкой указаны результаты экспериментальных исследований, пунктирной штриховкой — выводы, основанные на данных об энтропии плавления, строении твердой фазы при температуре плавления и строении простых жидкостей соответствующих элементов-аналогов в периодической системе Менделеева. Жидкие углерод, кремний и мышьяк, как уже отмечалось ранее, -- металлы. Плавление твердых фаз углерода, кремния и мышьяка, имеющих ковалентные решетки, сопровождается сравнительно большим увеличе- [c.269]

    Сопоставляя температуры плавления с данными о строении плавящихся фаз, можно отметить следующие закономерности. Т ц неметаллов одной подгруппы и однотипной структуры растут с увеличением порядкового номера п. Это наблюдается у инертных газов, галогенов, кислорода и его аналогов, азота и фосфора. В подгруппе кислорода полоний — металл, в подгруппе азота — мышьяк, сурьма и висмут тоже металлы, поэтому они не следуют указанному правилу. [c.280]

    У церия плавление сопровождается переходом к более плотной упаковке атомов и увеличением плотности на 2,5%. Плавление углерода, кремния, галлия, германия, мышьяка, сурьмы, теллура, висмута связано с большими изменениями их строения и свойств. Описание этих изменений имеется в гл. X. С ними связаны высокие значения [c.285]

Рис. 28. Строение сульфида мышьяка Рис. 28. <a href="/info/73135">Строение сульфида</a> мышьяка
    Опыт проводится под т я г о й ). к 50 мл 0,25%-ного раствора АзгОз прилейте 4—5 мл сероводородной воды раствор окрашивается в желтый цвет. Составьте уравнение реакции образования сульфида мышьяка и схему строения его мицеллы в коллоидном растворе, имея в виду адсорбцию ионов Н5", возникающих при электролитической диссоциации сероводорода. К какому типу коллоидов относится золь сульфида мышьяка Золь оставьте для опытов 5 и 7. [c.102]

    Паули расширил представления Иордиса и Дюкло. Он тоже считал, что мицелла состоит из сравнительно инертного ядра и способной к ионизации активной ч сти. Эту способную к ионизации часть мицеллы он назвал ионогенным комплексом. Паули рассматривал этот комплекс как настоящее комплексное соединение по теории Вернера и поэтому выражал строение мицеллы, например золя сульфида мышьяка, следующей формулой  [c.241]

    Сульфиды мышьяка применяются в кожевенной промышленности (для снятия волоса со шкур), в пиротехнике и производ- Строение стве минеральных красок SbgSa (т. пл. 560, т. кип. 1160°С) не- молекулы AS4S4. пользуется в пиротехнике, спичечном и стекольном производствах, [c.473]

    Вследствие диссоциации НгЗи Н5 Н++52 в растворе имеются гидросульфид-ионы Н5 (преобладают) и сульфид-ионы 5, которые адсорбируются ядром частицы, сообщая ей отрицательный заряд. Коллоидный раствор окрашен в ярко-желтый цвет, сильно опалесцирует. Мицелла трехсернистого мышьяка имеет следующий состав и строение  [c.106]

    Мышьяк образует соединения такого же строения, как и фосфор. Среди фосфор- и мышьякоргаиических соединений имеется большое число веществ, обладающих сильной биологической активностью. В связи с этим они используются как инсектициды, лекарственные препараты, например  [c.346]


    Еще ближе к решению вопроса о числовом отношении соединяющихся атомов подошла теория химических типов Ш. Жерара и его правило четных паев . В 1841 —1842 гг. Ш. Жерар установил правило, согласно которому число атомов углерода в химической формуле (если исходить из удвоенных формул) органического соединения кратно 4 или 2, число атомов водорода кратно 4, а число атомов кислорода кратно 2. В 1846 г. О. Лоран сформулировал такое правило Число атомов углерода и кислорода в органическом соединении может быть или четным, или нечетным, в то время как число атомов водорода должно быть всегда четным, а если соединение содержит и азот, тогда сумма атомов водорода и азота (соответственно фосфора, мышьяка) должна делиться на два . Это правило можно выразить другими словами В химической молекуле сумма нечетновалентпых атомов (Н, С1, В, N и др.) равняется четному числу . Например, во всех углеводородах сумма атомов водорода, а в азотных и водородных соединениях (КНз) сумма атомов водорода и азота равна четному числу. Этот вывод, рассматриваемый теперь как прямое следствие теории строения, был одной из первых закономерностей, которые позволили О. Лорану и Ш. Жерару делать заключение о числе атомов в молекуле и указывать на неправильное определение состава химических соединений, т. е. исправлять результаты химического анализа и химические [c.171]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]

    Валентная электронная конфигурация всех элементов VA-группы— ns np , т. е. на внешнем энергетическом (валентном) уровне они содержат 2 спаренных s-электрона и 3 неспаренных (в соответствии с правилом Гунда) электрона на трехкратно вырожденном р-уровне. Однако между элементами этой группы существуют и различия в электронном строении. Так, у фосфора в отличие от азота впервые появляется вакантный внешний М-уровепь, что обусловливает возможность промотирования одного 35-электрона с образованием пятиковалентного состояния, которое, как известно, отсутствует у азота. У мышьяка, сурьмы и висмута к вакантному -уровню добавляется еще в отличие от фосфора полностью завершенный внутренний (п—1) -уровень, а у висмута, следующего за лентаноидами, кроме того, и 4/ -уровень. [c.282]

    Наличие заполненных предвнешних (п—l)d- и (п—2)/-уровней сверх оболочки предыдущего благородного газа накладывает отпечаток на свойства элементов подгруппы мышьяка. Отметим, что между собой мышьяк, сурьма и висмут являются полными электронными аналогами и отличаются с точки зрения электронного строения от типических элементов VA-группы — азота и фосфора, т. е. по отношению к ним являются неполными электронными аналогами. [c.282]

    Впервые понятие о валентности было введено в химию английским химиком Франклендом в 1853 г. Под валентностью, или атомностью, данного элемента он понимал число атомов другого соединяющегося с ним элемента. Если принять валентность водорода равной единице, валентности других элементов определяются как число атомов водорода, соединяющееся с одним атомом рассматриваемого элемента. Франклендом была обнаружена трехва-лентность азота, фосфора, мышьяка и четырехвалентность (вместе с А. Кольбе) углерода. В дальнейшем представления о валентности сыграли исключительно важную роль в теории химического строения Бутлерова и создании Периодической системы химических элементов Менделеева. Это свойство зависит от состояния атомов рассматриваемого элемента, природы партнера, с которым реагирует данный элемент, условий взаимодействия. Так, углерод с одним и тем же партнером — кислородом в зависимости от условии взаимодействия образует СО2 и СО, в которых состояния атомов углерода различны. На основе валентности элементов легко определить формульный состав химического соединения. Поэтому величину валентности часто называют стехиометрической валентностью. [c.74]

    Свойства элементов и простых веществ закономерно изменяются в подгруппе с ростом радиуса атомов и уменьшением энергии ионизации, как это можно видеть из табл. 27. Азот и фосфор — типичные неметаллы, т. е. кислотообразователи. Различия в строении предвнеш-него электронного уровня у атомов фосфора и мышьяка меньше сказываются на изменении свойств элементов, чем при переходе от кремния к германию в IVA-подгруппе. У мышьяка сильнее выражены неметаллические свойства. У сурьмы неметаллические и металлические свойства проявляются приблизительно в одинаковой степени. Для висмута характерно преобладание металлических (основных) свойств. [c.339]

    Исследование светорассеяния является одним из наиболее универсальных, эффективных и широко применяющихся методов изучения строения и свойств дисперсных систем и растворов высокомолекулярных веществ. Для систем, к которым применимо уравнение Рэлея, методы, основанные на измерении мутности по уменьшению интенсивности прошедшего света (абсорбциометрия, турбидиметрия) и по определению интенсивности света, рассеянного под тем или иным углом (нефелометрия), вполне эквивалентны. При этом редко производится непосредственный расчет по ураввению Рэлея. Чаще мутности или светорассеяния изучаемой системы сопоставляют со свойствами системы с известной концентрацией и размером частиц, и из условия = onst определяют объем частиц V дисперсной фазы при известной концентрации вещества в дисперсной системе или концентрацию вещества при известном размере частиц. Эти методы очень чувствительны. Так, заметная мутность золя сернистого мышьяка может быть обнаружена при концентрации 10 %, [c.206]


Смотреть страницы где упоминается термин Мышьяк строение: [c.333]    [c.218]    [c.471]    [c.471]    [c.473]    [c.475]    [c.476]    [c.477]    [c.248]    [c.55]    [c.72]    [c.299]    [c.207]    [c.271]    [c.143]    [c.129]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.480 ]

Основы общей химии Т 1 (1965) -- [ c.455 ]

Основы общей химии том №1 (1965) -- [ c.455 ]




ПОИСК







© 2025 chem21.info Реклама на сайте