Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ток электрический, плотност

    О химических превращениях в системе можно судить по характеру изменения разнообразных физических свойств — изменения температур плавления и кристаллизации, давления пара, вязкости, плотности, твердости, магнитных свойств, электрической проводимости системы в зависимости от ее состава. Результаты исследования обычно изображают в виде диаграммы состав — свойство (по оси абсцисс — состав, по оси ординат — свойство). [c.136]


    Опасность статического электричества при электризации жидких углеводородов можно оценить, зная величину электрического заряда. При увеличении плотности электрического заряда напряженность поля может достигнуть такой величины, при которой произойдет электрический пробой. Величина электрического заряда, соответствующая пробою диэлектрика (нефтепродукта), будет предельной, больше которой не может быть плотность электрического заряда в трубопроводе. Предельная величина электрического заряда в трубопроводе прямо пропорциональна относительной диэлектрической проницаемости жидкости, пробивной напряженности электрического поля и обратно пропорциональна диаметру трубопровода. Увеличение диаметра трубы приводит к уменьшению предельной величины заряда статического электричества. При увеличении времени выдержки жидких углеводородов под напряжением предельная величина заряда уменьшается. С увеличением площади поверхности электродов предельная величина заряда жидкого диэлектрика снижается при постоянном напряжении. Предельная величина заряда очищенных диэлектриков сильно зависит от давления. При возрастании давления предельная величина заряда увеличивается. [c.151]

    ИОНОВ в двойном слое в действительности невозможно, так как помимо электростатических сил, возникающих между металлом и ионами, на последние должны действовать также силы теплового молекулярного движения. При наложении этих двух сил ионы в растворе должны распределяться относительно поверхности металла диффузно —с убывающей при удалении от иее объемной плотностью заряда, подобно тому, ка < меняется с высотой плотность воздушной атмосферы. При таком строении двойного электрического слоя для выражения связи между потенциалом и плотностью заряда уже нельзя пользоваться формулой плоского конденсатора. [c.264]

    Неполярные и полярные молекулы. В зависимости от характера распределения электронной плотности молекулы могут быть неполярными и полярными. В неполярных молекулах центры тяжести положительных и отрицательных зарядов совпадают. Полярные молекулы являются диполями, т. е. системами, состоящими из двух равных по величине и противоположных по знаку зарядов - -q и —q), находящихся на некотором расстоянии I друг от друга. Расстояние между центрами тяжести положительного и отрицательного зарядов назывгется длиной диполя. Полярность молекулы, как и полярность связи, оценивают величиной ее электрического момента диполя х, представляющего собой произведение длины диполя I на величину электрического заряда х = Iq. [c.83]


    Добавление к металлам различных компонентов, которые уменьшают неравномерность распределения вакантных мест и узлов с повышенной электрической плотностью, должно приводить к повышению устойчивости металлов против коррозионного воздействия гетероорганических соединений. Действительно, сплавы меди с цинком (бронзы, латуни) имеют лучшую коррозионную стойкость, чем чистая медь добавление к железу небольших количеств хрома, ванадия, никеля, углерода и других приводит к резкому повышению коррозионной стойкости этих сплавов. [c.242]

    Физические свойства. В соответствии с характером изменения структуры и типа химической связи закономерно изменяются и свойства простых веществ — их плотность, температура плавления и кипения, электрическая проводимость и др. Так, аргон, хлор р,г/см и сера в твердом состоянии являются диэлектриками, [c.235]

Рис. 4. Вид кривых распределения электрической плотности заряда ионной атмосферы для различных теорий растворов. Рис. 4. Вид <a href="/info/6103">кривых распределения</a> электрической <a href="/info/616444">плотности заряда ионной атмосферы</a> для различных теорий растворов.
    Истинный радиус электрона нам совершенно неизвестен. Современная квантовая межника не позволяет локализовать точно положение электрона в данный момент, а дает лишь вероятность его нахождения в этот момент в заданной точке. Конечный средний результат движения электрона такой же, как если бы он был размазан с переменной электрической плотностью по некоторому объему. Шредингер первоначально считал, что такова в действительности структура электрона, но, как уже указывалось, эго предположение противоречит ряду фактов (см. выше 34). [c.81]

    Было предпринято много попыток разработать теорию двойного электрического слоя, которая бы количественно согласовывалась с опытными данными. Так, Райс (1926—1928) высказал предположение, что и внутри металла пе все заряды локализованы в одной плоскости, а распределяются в его объеме с постепенно убывающей плотностью. Одпако представление о двух диффузных слоях по обе стороны границы раздела вряд ли приложимо к тому случаю, когда одна нз граничащих фаз. чвляется металлом. Возможно, что оио реализуется на границе ионопроводящих фаз, а также на границе полупроводника с раствором. [c.271]

    Обращаясь к щелочногалоидным кристаллам, для которых имеется достаточно экспериментальных данных, мы увидим, что для них е лежит в пределе 0,65—0,80 элементарного заряда, что резко расходится с данными по распределению электрической плотности. Кроме того, явно валентный кристалл Si , согласно приведенной формуле, будет иметь заряд 0,93. [c.199]

    Длины и энергии связи, валентные углы, а также экспериментально определяемые магнитные, оптические, электрические и другие свойства веществ непосредственно зависят от характера распределения электронной плотности. Окончательное заключение о строении вещества делают после сопоставления информации, полученной разными методами. Квантовомеханическая теория химической связи обобщает совокупность экспериментально полученных данных о строении вещества. [c.43]

Рис. 14. Разрез через молекулу полиэтилена, показывающий линии равной электрической плотности. Рис. 14. Разрез через молекулу полиэтилена, показывающий линии <a href="/info/1879578">равной</a> электрической плотности.
    Первая иоиытка количественного оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г., хотя некоторые ее положения уже содержались в работах Батлера (1924) и Одюбера (1924). Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода иод током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А. Н. Фрумкиным (1933), который впервые учел влияние строения двойного электрического слоя на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние. [c.345]

    После подстановки выражения Больцмана для электрической плотности П получим [c.262]

    Отдельная аэрозольная частица может иметь один или несколько элементарных электрических зарядов (е = 4,8-10 абсолютных электростатических единиц = 1,6-10 Кл). Электрическое состояние аэрозольной системы обычно характеризуется распределением зарядов на частицах кривая распределения показывает, какой процент частиц имеет один, два и т.д. положительных или отрицательных зарядов. Если эта кривая симметрична относительно зарядов обоих знаков, т.е. число частиц, несущих определенный положительный заряд, равно числу частиц, несущих такой же отрицательный заряд, то суммарный заряд аэрозольного облака будет равен нулю. Однако кроме таких электрически нейтральных в целом систем, существуют аэрозоли, в которых преобладает заряд определенного знака, а также униполярные аэрозоли, в которых все частицы без исключения имеют заряд одного знака. Такие аэрозоли обычно характеризуются электрической плотностью, т.е. числом зарядов (в электростатических единицах) в единице объема. [c.78]


    В качестве примера характеристических величин из электротехники можно привести электрический заряд е как экстенсивную величину, тогда как значение е, отнесенное к единице объема V, т. е. плотность заряда = е/У, является характеристикой интенсивности заряда. Электротехника, как известно, только тогда вышла за рамки эмпиризма и получила свою теорию, когда Максвелл вывел свои уравнения (1878 г). Можно легко убедиться в том, что эти уравнения, если рассматривать их сущность, представляют собой закон сохранения электрического заряда. Уравнения Максвелла выражают зависимость между векторами Е, В, Н, В и ]. [c.8]

    Ре — плотность электрического заряда, k m . [c.10]

    Качество продуктов контролируется и регулируется анализаторами качества, которые включены в систему регулирования. Назначение анализаторов качества автоматическое определение вязкости, температуры вспышки, начала кипения светлых нефтепродуктов, определение содержания соли в воде и воды в нефти, определение фракционного состава, плотности. Существуют также следующие приборы хроматограф промышленный автоматический, газоанализатор оптико-акустический для автоматического определения содержания (в %) окиси углерода, газоанализатор магнитно-электрический для автоматического определения содержания (в %) кислорода прибор для определения вязкости нефтепродукта на потоке. [c.222]

    Если в адсорбции участвует электроотрицательное вещество, то под воздействием двойного электрического слоя (за счет электростатического отталкивания) уменьшается плотность электронов вблизи металлической поверхности. Это уменьшение, в свою очередь, снижает скорость дальнейшего процесса адсорбции и энергию адсорбционных связей. [c.185]

    Поляризация — это явление образования или ориентации электрических моментов молекул вещества в направлении электрического поля вследствие взаимного смещения электрической плотности в молекуле. Поляризация вещества ведет к появлению электрических зарядов. В связи с этим склонность молекул к поляризации имеет важное значение в процессах электриза- ции топлива. Поляризация численно измеряется в м и относится к молю (мольная поляризация) или единице объема (удельная поляризация) вещества. Чем больше величина удельной поляризации, тем легче топливо электризуется. [c.83]

    Обозначения. —предельный потенциал зарядки —толщина пленки —электрическая плотность Я —электрофоточувствительность —время полуспада заряда в темноте ХА —хлоранил. [c.285]

    Резко выраженные дефекты кристаллов имеют медь, свинец, железо. Значит, неравномерное распределение центров с разным энергетическим уровнем у них должно быть наиболее ярко выражено и они должны иметь минимальную устойчивость к коррозионному воздействию полярных соединений (сернистых и др.) с низкими уровнями энергии активации. Проведенные исследования [3] подтвердили это положение. Сильнее всего подвергается коррозии медь. На меди легче всего образуются пленки и отложения. Добавление к металлам различных компонентов, которые уменьшают неравномерность распределения вакантных мест и узлоз с повышенной электрической плотностью, должно вести к повышению устойчивости металлов против коррозионного воздействия гетероорганических соединений. [c.177]

    Поляризуемость связи. Для характеристики реакционной способности молекул важно знать не только исходное распредепение электронной плотности, но и возможность ее изменения. Мерой последней служит поляризуемость связи — ее способность становиться полярной (или более полярной) в результате действия на молекулу внешнего электрического поля. Так как с каждым атомом или молекулой в свою очередь связано электрическое поле, то соединение должно поляризоваться также и при действии на молекулу других молекул, скажем, партнера по реакции. [c.81]

    Если диполи в количестве а на единицу площади поверх.чо-сти располагаются перпендикулярно к поверхности проводника, то возникающая система по типу приближается к двойно.му электрическому слою, т. е. положительному слою и отрицательному слою с электрической плотностью ав, находящимися на расстоянии с1 друг от друга. В случае когда дипольный момент индивидуальных адсорбированных комплексов не зависит от заполнения, эту систему. яюжно рассматривать как конденсатор или дипольную пленку, потенциал которой пропорционален числу отдельных диполей на единице поверхности. Произведение электрического заряда на расстояние с1 дает дипольный момент М. Внешних полей с совершенным двойным слоем не существует, и значение электростатического потенциала, согласно [c.89]

    Дисперсионное притяжение. В любой молекуле возникают флуктуации электрической плотности, в результате чего появляются мгновенные диполи, которые в свою очередь индуцируют мгновенные диполи у соседних молекул (рис. 3.1, в). Движение мгновенных диполей становится согласованным, их появление и распад происходит синхронно. В результате взаимодействия мгновенных диполей энергия системы понижается. Энергия дисперсионного взаимодействия пропорциональна поляризуемости молекул и обратно пройор- [c.66]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    В случае примесных полупроводников, пока содержание примесных атомов невелико, остаются в силе основные соотношения, полученные для собственно полупроводников. С ростом содержания примесей поведение системы полупроводник— раствор уже не может быть описано приведенными уравнениями и зависит от природы примесных атомов. Так, в пределе для примесного л-полупр6 -водника, особенно ири высокой плотности поверхностных состояний, электрические свойства границы его с раствором приолнжаются к свойствам системы металл — раствор. [c.275]

    Анализ кинетических уравнений, описывающих электрохимическое персаапряжение, показывает, что наиболее важными его характеристиками следует считать ток обмена /о и коэффициент переноса а. При одном и том же отклонении потенциала электрода от равновесного значения скорость реакции (результативная плотность тока) будет тем больше, чем выше ток обмена. Последний, в свою очередь, озвисит от природы. электро нмической реакции, материала электрода и состава раствора. Коэффициент переноса характеризует степень влияния электрического поля электрода на энергию активации электрохимической стадии и определяет также симмет- [c.364]

    В соответствии с различием в кристаллической структуре (в особенности в типах химической связи) полиморфные модификации различаются (иногда очень резко) по своим физическим свойствам — плотности, твердости и пластичности, электрической проводимости и пр. Так, графит черного цвета, непрозрачен, проводит электрический ток алмаз — прозрачен, электрический ток практически не проводит. Графит—мягкое вещество, а алмаз — самое твердое из всех известных природных веществ плотность графита 2,22 г/см , алмаш 3,51 г/см . Полиморфные модификации отличаются, иногда очен11 заметно, и по своей химической активности. [c.111]

    Оба эти уравнения также дают возможность определить истинное. значение коэффициента переноса. Такой метод построения поляризационных кривых и определения величин а и /о был предложен Делахеем с сотр. и проверен на ряде электрохимических реакций. Метод предполагает, что величину гр1 можно рассчитать на основе теории двойного электрического слоя с использованием данных, относящихся к равновесным условиям. Допускается, что прохождение тока не изменяет существенно структуру двойного слоя. Это допущение оправдывается, по мигнию Делахея, с достаточно хорошим приближением вплоть до весьма высоких плотностей тока. [c.367]

    НИЙ теории локальных элементов, удобны для качественного рассмотрения процесса коррозии и для оценки возможного влияния на него различных факторов. В то же время их использование при. количественных расчетах скорости коррозии связано со значительными трудностями. Скорость коррозии определяется изменением массы образца за единицу времени, отнесенным к единице его поверхности, или (в электрических единицах) плотностью тока /. Коррозионные же диаграммы, прив15денныс на рнс. 24.4 и 24.5, построены в координатах потенциал — сила тока, т. е. не позволяют судить о плотности тока, непосредственно характеризующей скорость коррозии. Для ее расчета нужны поэтому дополнительные данные. Необходимо знать качественный состав корродирующего металла, чтобы выяснить, какие компоненты металла в данных условиях будут играть роль катодов и какие — анодов. Необходимо установить долю поверхности, приходящуюся на каждый катодный и анодный участок, чтобы иметь возможность определять плотность тока на любом из них. Далее требуется для всех анодных составляющих снять анодные поляризационные кривые, а для всех катодных— катодные. Это позволит найти общую скорость катодной, и анодной реакций и установить наиболее эффективные анодные и катодные составляющие. Зиая стационарные потенциалы, можно,, суммируя все катодные и все анодные кривые, построить результативную коррозионную диаграмму, пс которой уже затем определить максимально возможную силу тока. Предполагая, что омические потери малы, и зная, как распределяется поверхность между анодными и катодными зонами, вычисляют скорость коррозии. Этот сложный способ, дающий к тому же не всегда однозначные результаты (в связи с возможностью совмещения катодных и анодных реакций на одном и том же участке), редко применяется для количественной оценки скорости коррозии. [c.499]

    Перед началом анализа проверяют плотность всех кранов и шлифов и герметичность прибора. Для этого гребенку заполняют подкисленной водой, напорную склянку ставят ниже стола, на котором стоит аппарат, открывают кран / на гребенке и оба крана вилки. Если монтаж прибора выполнен без дефектов, жидкость в гребенке остается неподвижной. При наличии неплотных соединени11 около них появляются пузырьки воздуха, по которым легко определяют и устраняют неплотности. После проверки прибора на плотность жидкость из гребенки з даляют и поднимают уровни поглощающих жидкостей Б сосудах до меток. Затем проверяют электрическую часть и, если последняя в порядке, приступают к анализу. [c.244]


Смотреть страницы где упоминается термин Ток электрический, плотност: [c.4]    [c.7]    [c.83]    [c.4]    [c.122]    [c.127]    [c.51]    [c.83]    [c.308]    [c.6]    [c.8]    [c.117]    [c.263]    [c.265]    [c.378]    [c.36]    [c.36]    [c.71]    [c.10]   
Электроосаждение металлических покрытий (1985) -- [ c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте