Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая кинетика, применение радиоактивности

    Реакции обмена. Общие положения (129). Кинетика реакций обмена (132). Механизмы реакций обмена (133). Закономерности обмена некоторых элементов (135). Исследование строения и равноценности связей в химических соединениях (139). Применение метода меченых атомов для исследования механизмов химических реакций (141). Изотопно-кинетический метод исследования механизмов химических реакций (152). Глава 10. Применение радиоактивных изотопов в аналитической [c.239]


    ПРИМЕНЕНИЕ МЕТОДА РАДИОАКТИВНЫХ ИНДИКАТОРОВ В ХИМИЧЕСКОЙ КИНЕТИКЕ [c.318]

    В табл. ПА приведены результаты изучения химической кинетики и механизма реакций с помощью радиоактивных индикаторов. Перечислены изучавшиеся реакции и кратко сформулированы полученные результаты. Так как результаты исследований кинетики реакций изотопного обмена приведены в табл. 1А и 1Ь, то они не включены в настоящую таблицу. Не включены также данные большого числа работ по химической кинетике, при которых использовались в качестве индикаторов стабильные изотопы и данные по применению как стабильных,, так и радиоактивных индикаторов в биологической кинетике, так как эти области выходят за пределы задач данной книги. Использовались все работы, опубликованные до 1949 г. включительно. Однако авторы не претендуют на полноту приведенных сведений, так как среди работ, относящихся к области классической кинетики или биологии, трудно найти исследования, специально посвященные изучению реакций с радиоактивными индикаторами. [c.318]

    Согласно представлениям химической кинетики, константа скорости любой реакции одна и та же как в условиях, далеких от равновесия в реагирующей смеси, так и при равновесии. Определение константы скорости прямой и обратной реакции в условиях, далеких от равновесия, возможно без применения меченых атомов, и такие опыты проводились задолго до использования метода меченых атомов. Однако неизотопными методами невозможно проконтролировать скорости прямой и обратной реакции при равновесии, и поэтому долгое время упомянутое представление о равенстве констант скоростей одной и той же реакции в равновесных и неравновесных условиях оставалось чисто гипотетическим. Экспериментально проверить и подтвердить эту гипотезу смогли только с помощью радиоактивных изотопов. [c.275]

    Метод меченых атомов приобрел большое значение во многих областях науки. Особенно широко он используется в биологии и медицине. Радиоактивные изотопы нашли также широкое применение при изучении ряда важнейших проблем химии и физики. В настоящее время известны работы по применению радиоактивных изотопов при исследовании реакций изотопного обмена, изучении строения и прочности молекул, при исследовании механизма и кинетики химических реакций, механизма катализа, адсорбции, диффузии, трения, при изучении проблем аналитической химии, электрохимии и т. д. За последнее время меченые атомы начали применяться для исследования и контроля промышленных процессов. [c.337]


    ПРИМЕНЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ ДЛЯ ИЗУЧЕНИЯ СТРОЕНИЯ ХИМИЧЕСКИХ СОЕДИНЕНИИ, МЕХАНИЗМА И КИНЕТИКИ ХИМИЧЕСКИХ РЕАКЦИИ [c.639]

    Применение радиоактивного ионизационного детектора для определения перманентных газов методом газовой хроматографии и для изучения химической кинетики. [c.169]

    Настоящая книга посвящена в основном новым приложениям физических методов к координационной химии. Речь идет о тех методах, предвозвестниками которых были проводившиеся Вернером в конце XIX в. определения электропроводностей растворов комплексных солей и начатое Н. Бьеррумом изучение равновесий комплексов в водных растворах, которые, однако, не применялись исследователями в области координационной химии достаточно широко до 40-х годов. Естественно поэтому, что книга начинается главой об исследованиях термодинамики комплексо-образования в растворах, являющейся прямым продолжением ранних работ Н. Бьеррума, проводимых в значительной части его сыном Я. Бьеррумом за этой главой следует глава о кинетике комилексообразования. Оба эти раздела за последние годы очень сильно расширились в результате применения новых физико-химических методик, и особенно использования радиоактивных изотопов. [c.9]

    При изучении кинетики электрохимических процессов применяются не только электрические методы. Так, для определения токов обмена и исследования явлений адсорбции на электродах используются радиоактивные изотопы. Ряд методов был разработан и применен при изучении кинетики конкретных электрохимических реакций. Так, например, тонкие металлические мембраны используются при изучении процесса диффузии электролитического водорода в толщу электрода и установления его связи с явлением передачи потенциала на неполяризуемую сторону мембраны. Изучение температурной зависимости скорости электрохимических реакций позволяет лучше понять их природу. Константа скорости химической реакции, т. е. скорость реакции при единичных концентрациях ее участников, связана с температурой уравнением Аррениуса [c.326]

    В первой части книги рассматриваются следующие проблемы основные закономерности реакций изотопного обмена в гомогенных и гетерогенных системах, применение метода радиоактивных индикаторов для изучения кинетики химических реакций, структуры молекул, процессов самодиффузии и измерения величины поверхности. Рассмотрены различные методы анализа, основанные на использовании радиоактивности (анализ по естественной радиоактивности, активационный анализ и др.). Значительное место уделено свойствам радиоактивных индикаторов без носителей и их применению. Описаны работы по открытию и изучению свойств новых элементов, при которых использовались радиометрические методы. Рассмотрен значительный круг химических явлений, сопровождающих ядерные реакции и химические процессы, происходящие под действием атомов отдачи (химия горячих атомов). Собран материал по эманационным методам. [c.3]

    Открытие И изучение изотопов оказало большое влияние на все последующее развитие физики, химии и других естественных наук. Многие радиоактивные изотопы нашли широкое применение в физике, геологии, в технике, в разнообразных научных исследованиях, в биологии и медицине. Радиоактивные изотопы применяются для изучения износа деталей машин и инструмента, для автоматического контроля за ходом производственных процессов, контроля качества продукции, для изучения строения молекул и механизма химических реакций, для исследования явлений диффузии в газах, жидкостях и твердых телах, изучения коррозии металлов, кинетики кристаллизации, растворимости трудно растворимых солей, процессов адсорбции и многих других вопросов. Особенно большое значение изотопы имеют для изучения обмена веществ в растительных и животных организмах, диагностики и лечения многих заболеваний. Обычно для решения различных задач применяют определенный изотоп данного элемента, отличающийся своей массой от средней массы атомов этого элемента в природных соединениях или отличающийся от них радиоактивностью. Такой изотоп (изотопный индикатор) вводят в процесс и в различных его стадиях контролируют содержание изотопа. [c.23]

    В качестве примера применения уравнения (10) рассмотрим а-распад радиоактивного элемента, например радия. Этот процесс, хотя он и не является химической реакцией (и поэтому не зависит от температуры), протекает строго по кинетике реакций первого порядка. Атомы радия испускают а-частицы (т. е. ядра гелия, лишенные электронов), превращаясь в инертный газ радон. Полупериод процесса составляет примерно 1600 лет. По истечении этого времени от 1 г радия остается 0,5 г, еще через 1600 лет остается 0,25 г и т. д. (рис. 93). Согласно уравнению (10), константа распада радия (эквивалентная константе скорости реакции первого порядка) ki = 0,693/1600 = 0,000433 год" . [c.270]


    За последнее время в практику работы лабораторий прочно входят новые методы физико-химического исследования. К таким новым методам можно отнести и масс-спектрометрический анализ, без применения которого немыслима работа, связанная со стабильными, а также радиоактивными изотонами. Построенный, в основном, для целей изотошюго анализа масс-спектрометр с успехом применяется в ряде других областей исследования. При помощи масс-спектрометра проводят анализ различных газовых смесей, исследуют строение и энергетические уровни молекул, определяют состав паров различных веществ, исследуют кинетику химических превращений, обнаруживают промежуточные продукты реакций. Масс-спектрометр применяется при изучении каталитических процессов, проводимых с веществами, меченными какими-либо атомами [1—4]. Этот новый метод исследования был нами применен для изучения некоторых новых сво11ств алюмосиликатных катализаторов, а именно, их эмиссионных свойств. [c.378]

    Хроматографическая методика натпла значительное применение в исследовании каталитических свойств различных контактов при изучении кинетики и механизма процессов. Впервые изучение каталитической реакции при сочетании микрореактора и хроматографической колонки было проведено Эмметом и сотр. [1], которые исследовали катализатор крекинга типа Гудри. Сущность этого метода заключается в том, что микрореактор устанавливается перед хроматографической колонкой и исходное вещество вводится в реактор в виде импульса, который, проходя через слой катализатора, потоком газа-носителя подается на хроматографическую колонку. Регистрация концентрации вещества производится любым детектирующим устройством. При использовании радиоактивных веществ применяют счетчики Гейгера [1, 2]. Принципиальная схема микрокаталитической установки приведена на рис. 51. Особенности химических реакций в хроматографическом режиме рассмотрены в работах Рогинского с сотр. [3]. [c.131]

    В настоящее время трудно представить, что такие отрасли промышленности, как гидрометаллургия, тонкий органический синтез, ядерная технология, и такие процессы, как водоподго-товка на тепловых и атомных электростанциях, очистка сточных вод и теплоносителя ядерных реакторов от радиоактивных примесей и др., могут существовать без применения ионитов. Большинство процессов в перечисленных отраслях промышленности осуществляется при повышенных температурах, в агрессивных средах или при воздействии ионизирующих излучений. При продолжительном использовании ионитов происходит необратимое изменение их физико-химических и технологических свойств, обусловленное деструкцией полимерной матрицы или функциональных групп. Из трех составляющих компонентов набухшего ионита (полимерная матрица, функциональные группы, вода) наименее стойки функциональные группы. Поэтому основное внимание при. исследовании термической, химической и радиационной стойкости ионитов уделяется механизму и кинетике разрушения или отщепления функциональных групп. Матрица ионитов, построенная обычно на основе карбодепных полимеров, характеризуется значительно большей термической и радиационной стойкостью (но меньшей стабильностью в окислительных средах) чем функциональные группы. Вода, несомненно, наиболее устойчивый компонент в составе набухшего ионита, но в ее присутствии стойкость функциональных групп и матрицы понижается. [c.6]

    Лабораторные автоматические приборы дают возможность проводить массовые однотипные анализы титровать жидкости, содержащие радиоактивные изотопы, ядовитые или взрывоопасные вещества проводить анализ растворов, окраска которых или содержание в них твердых частиц мешают применению индикаторов титровать с помощью нестойких титран-тов, которые реагируют с кислородом или двуокисью углерода, находящимися в воздухе изучать кинетику химических и биохимических реакций. Титрующие анализаторы промышленного типа позволяют контролировать почти все химико-технологические процессы, а в некоторых случаях и регулировать их. [c.90]

    Другой областью применения гель-хроматографии в биохимии является отделение белков от низкомолекулярных мешающих анализу примесей, например аминокислот, сахаров, стероидов или реагентов, используемых для химической модификации белка. Методом гель-хроматографии чаще всего удаляют реагенты, предназначенные для введения в белок радиоактивной и флуоресцентной меток. Гель-хроматография позволяет также быстрее и эффективнее, чем диализ, осуществить обессолива-ние или смену буфера, требуемые в определенных схемах фракционирования, а также удаление кофакторов и ингибиторов, используемых при изучении кинетики ферментативных реакций. Кроме того, с помощью этого метода можно изучать связывание белков с низкомолекулярными соединениями, например лекарственными веществами, ионами металлов и красителями [10]. Коэффициент распределения Ка некоего стандартного белка с из- [c.106]


Библиография для Химическая кинетика, применение радиоактивности: [c.316]    [c.163]    [c.519]   
Смотреть страницы где упоминается термин Химическая кинетика, применение радиоактивности: [c.157]    [c.57]    [c.57]    [c.157]    [c.60]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая

Применение метода радиоактивных индикаторов в химической кинетике

Применение радиоактивных изотопов для изучения строения химических соединений, механизма и кинетики химических реакций

Химическая кинетика, применение радиоактивности сводка работ



© 2025 chem21.info Реклама на сайте