Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы газовой и газо-жидкостной хроматографии

    Мы кратко остановились на некоторых методах жидкостной хроматографии. Но существует еще много других методов хроматографии — осадочная, газовая, газо-жидкостная и т. д. Все эти методы подробно рассматриваются в специальных разделах аналитической химии. [c.145]

    В последнее время развивается новое направление— двумерная (тандемная) масс-спектрометрия (МС — МС, масс-спектрометр — масс-спектрометр). Метод включает ионизацию молекул и разделение по массам ионов, образующих масс-спектр, выбор из этого спектра определенного иона-предшественника и получение масс-спектра продуктов его фрагментации в результате мономолекулярного разложения мета-стабильных ионов с малым временем жизни ( Ю с) или в результате дальнейшего возбуждения иона-предшественника столкновениями с инертным газом. Получаемые спектры могут использоваться и для решения аналитических задач, и для идентификации отдельных соединений в сложных матрицах. По сравнению с сочетанием газовой и жидкостной хроматографии с масс-спектрометрией МС—МС имеет преимущество в селективности, чувствительности и скорости анализа. Наибольшее преимущество масс-спектрометри-ческого разделения компонентов смеси — менее строгие требования к летучести образцов. [c.756]


    Метод термического разложения нелетучих компонентов неф тей в температурном интервале 600—900° С с последующей качественной и количественной характеристикой газообразных и жидких продуктов пиролиза методом газо-жидкостной хроматографии впервые применили геохимики [13—15]. Достоинствами этого метода являются его экспрессность и возможность проведения анализа с малыми количествами образцов. После удачного решения аппаратурно-методических вопросов [15] и установления на примере исследования самых различных каустобиолитов (в том числе и остаточной части нефтей) строгой корреляции между происхождением органической основы образца и содержанием бензола р продуктах его глубокого термического разложения этот метод вошел в практику геохимических исследований. Кроме того, реакция термической деструкции в сочетании с методами газовой хроматографии успешно применяется для изучения таких материалов, как уголь и различные полимеры [16—18]. В основе всех этих методов — исследование доступных для анализа (ГЖХ, масс-спектрометрия и др.) продуктов термического разложения высокомолекулярных соединений. [c.168]

    Газовая, или парофазная, хроматография представляет собой самое последнее достижение хроматографии, а ее открытие вызвало колоссальный интерес среди аналитиков, технологов и исследователей [1, 35, 38, 44, 51, 68]. Термин газовая хроматография включает все хроматографические методы, в которых подвижная газовая фаза несет вещества, предназначенные для разделения, через неподвижную фазу, помещенную в подходящий контейнер. Если неподвижная фаза является твердым адсорбентом, то метод называют газо-адсорбционной хроматографией. Если неподвижная фаза — абсорбирующая жидкость, нанесенная на инертный материал, то метод называют газо-жидкостной хроматографией. [c.315]

    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]


    Адсорбционное концентрирование можно применять и при анализе жидкостей, например природных или сточных вод. Пробу воды пропускают через колонку с сорбентом, при этом примеси адсорбируются, а вода выходит из колонки. Для проведения десорбции в этом случае применяют не тепловое воздействие, а смывают примеси небольшим количеством (обычно 0,5—2,0 мл) подходящего растворителя. Последующий анализ осуществляют методами газовой или жидкостной хроматографии. В качестве концентратора можно использовать бюретку. Подбор адсорбента при концентрировании из жидких систем — более трудная задача, чем при концентрировании из газов, так как степень обогащения в этом случае сильно зависит от растворителей в исходной пробе и получающемся концентрате. Редко удается добиться 100%-го извлечения примеси и целесообразно оценить прежде всего коэффициент извлечения, равный отношению массы примеси в )астворителе, пропущенном через концентратор на стадии десорбции к массе этой примеси в исходной пробе т  [c.203]

    С 1952 г. в практике анализа смесей органических веществ получил широкое распространение новый метод исследования — газо-жидкостная хроматография (ГЖХ). Этот метод основан на продвижении молекул вещества в потоке газа-носителя через твердый сорбент с нанесенной на него жидкой фазой. Разделение веществ осуществляется за счет многократного перераспределения вещества между жидкой и газовой фазами в хроматографической колонке. Вещества, имеющие различные коэффици- [c.163]

    В процессах производства, капролактама, где исходным сырьем является циклогексан, получаемый гидрированием бензола, образуются в качестве промежуточных продуктов многокомпонентные смеси углеводородов, нитросоединений, кетонов, спиртов, моно- и дикарбоновых кислот и других органических соединений, состав которых и чистоту целевых продуктов, как правило, трудно определить классическими аналитическими методами. В этом случае наиболее эффективным методом является газо-жидкостная хроматография, особенно в сочетании с инфракрасной спектроскопией. Комбинированное применение указанных методов оказалось весьма полезным при исследовании состава продуктов производства капролактама, а для их количественного анализа и заводского контроля рекомендованы простые и надежные методы газовой хроматографии. [c.297]

    В газовой хроматографии проба небольшого объема вводится в движущийся газовый поток, проходящий через колонку стационарной фазы — активного твердого вещества или слаболетучей жидкости, удерживающейся на инертном твердом веществе в виде тонкой поверхностной пленки. Стационарная фаза может также быть представлена жидкостью в виде тонкой пленки на внутренней поверхности капиллярной трубки. Составляющие пробы распределяются между двумя фазами. Если их коэффициенты распределения различны, то они движутся сквозь стационарную фазу с разными скоростями, выходя из колонки раздельно. Теперь с помощью соответствующей аппаратуры можно определять отдельные компоненты. Описанный метод известен как элюционный . Другие способы, такие как фронтальный анализ и методы вытеснения, применяются относительно редко. В случае применения жидкой стационарной фазы метод называется газо-жидкостной хроматографией, а в случае применения твердого вещества — газо-твердой хроматографией. [c.268]

    Адсорбционная хроматография — один из основных хроматографических методов разделения и анализа. Только с помощью адсорбционной хроматографии можно разделять любые молекулярные смеси — от газов до высокомолекулярных соединений. Этот метод дает возможность параллельно исследовать механизм разделения одной и той же смеси на одной и той же неподвижной фазе (адсорбенте) методами газовой и жидкостной хроматографии, в результате чего удается определить роль межмолекулярных взаимодействий компонентов смеси с жидким элюентом. [c.10]

    Среди новых методов определения величины поверхности и получения таких термодинамических характеристик адсорбционной системы, как константы Генри, изотермы и теплоты адсорбции при малых и средних заполнениях поверхности, важное значение приобрел хроматографический метод. Если с помощью обычных вакуумных статических методов изучалась адсорбция лишь немногих молекул (обычно это благородные газы, азот, двуокись углерода, аммиак, метан, вода, метанол, бензол, гексан), то методы газовой и жидкостной хроматографии позволили быстро изучать адсорбцию огромного количества молекул от изотопов и изомеров водорода до тяжелых макромолекул. Кроме того, хроматографические [c.11]


    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    Разграничение методов хроматографического разделения смесей по признаку применения их в неорганическом либо в органическом анализе явилось бы условным. Например, газо-жидкостная хроматография недавно нашла применение в неорганическом анализе для разделения хе-латных соединений металлов [3] известны также работы по применению газовой хроматографии для определения четыреххлористого германия в смеси с другими хлоридами [4]. [c.9]

    Сущность разделения газовой смеси с помощью метода газо-жидкостной хроматографии заключается в том, что анализируемая проба перемещается потоком газа-носителя по колонке, заполненной неподвижным слоем сорбента. Концентрация вещества в газовой фазе определяется его распределением в системе сорбент — газ-носитель и зависит от коэффициента Генри. [c.66]

    В методе газовой хроматографии применяют молекулярную адсорбцию к анализу смесей газов и паров. В методе газо-жидкостной хроматографии используют распределительную хроматографию в анализе смесей газов и паров. [c.450]

    Классические хроматографические методы, которые известны уже в течение нескольких десятилетий,— хроматография на колонке с окисью алюминия (Цвет, 1906 г. Кан, Винтерштейн и Ледерер, 1931 г.), хроматография на бумаге (Мартин и Синг, 1941 г.) — основаны на принципе распределения компонентов смесей между подвижной и неподвижной фазами. Последней при адсорбционной хроматографии является активная поверхность твердого адсорбента, а при распределительной хроматографии — тонкая пленка жидкости, удерживаемая твердым носителем и ограниченно смешивающаяся с подвижной фазой. Разновидность распределительной хроматографии, при которой подвижной фазой является газ, называется газовой хроматографией [134а]. Этот метод пригоден для разделения газов, а также жидких или твердых веществ, которые могут быть превращены в пары без разложения. В зависимости от системы, в которой проводится разделение, различают две принципиальные разновидности газовой хроматографии хроматографию в системе газ — твердое вещество (адсорбционная газовая хроматография) и хроматографию в системе газ — жидкость (газо-жидкостная хроматография). В первом случае разделение происходит за счет адсорбции веществ на активной поверхности твердого адсорбента, во втором — за счет их растворения в тонкой пленке нелетучей жидкости с достаточно большой поверхностью. Практически далеко не всегда можно провести четкую грань между обоими принципами разделения. Так, при хроматографии в системе газ — адсорбент пленка адсорбированного вещества может иметь такие свойства, что на некоторых этапах работы возникают условия для хроматографии в системе газ — жидкость. Вследствие этого происходит дезактивации- некоторых активных центров адсорбента, которую иногда вызывают умышленно [74—76]. С другой стороны, при хроматографии в системе газ — жидкость носитель, на котором закреплена жидкая фаза, может обладать и некоторыми адсорб-цйонными свойствами. Это, как правило, мешает разделению и поэтому нежелательно. [c.487]

    Наряду с газо-адсорбционной хроматографией широко применяется также газо-жидкостная хроматография. В этом методе разделения газовых смесей на индивидуальные составные части заложен тот же основной принцип, который описан выше. Однако в качестве неподвижной фазы, на которой происходит поглощение вводимого в колонку газа, в данном случае применяются различные нелетучие жидкости. Для увеличения общей поверхности поглощения жидкий сорбент наносится на крупнопористый инертный носитель (диатомовый кирпич, трепел и др.), не обладающий адсорбционной активностью по отношению к компонентам анализируемой газовой смеси. [c.46]

    Газо-жидкостная хроматография обладает двумя преимуществами по сравнению с обычной распределительной хроматографией (в системе жидкость—жидкость). Во-первых, скорость распределения вещества между подвижной газовой фазой и стационарной жидкой фазой (в виде пленки) намного выше, чем в случае жидкой подвижной фазы. Эффективность разделения в связи с этим существенно повышается, так как процесс может быть проведен с достаточно высокой скоростью даже при использовании очень длинных колонок. Во-вторых, могут быть разработаны (во многих случаях это уже весьма остроумно сделано) чувствительные и точные методы детектирования и автоматической регистрации фракций газового элюата. Однако применение метода ограничено устойчивостью разделяемых веществ при температурах, необходимых для создания достаточного давления пара. В одной из недавних работ [17] было показано, что на усовершенствованных [c.23]

    Принцип разделения газовой смеси методом газо-жидкостной хроматографии основан на различной растворимости компонентов смеси в так называемой разделительной жидкости, которой пропитан твердый инертный носитель. Последний не должен обладать адсорбционными свойствами, его назначение — создание возможно большей поверхности нанесенного на него растворителя. [c.60]

    ХРОМАТО-МАСС-СПЕКТРОМЕТРИЯ, метод анализа смесей гл. обр. орг. соединений. В основе Х.-м.-с. лежат колоночная газовая (или жидкостная) хроматография и масс-спектрометрия. С помощью первого метода осуществляется разделение смеси на отд. компоненты, с помощью второго — количеств, анализ, идентификация и установление строения в-в. Анализируемую смесь вводят в испаритель хроматографа, откуда она в виде пара вместе с газом-носителем под давл. поступает в хроматографич. колонку, где происходит ее разделение. [c.669]

    Хроматограф, на котором можно осуществить такое разделение, представляет собой довольно сложный прибор, по крайней мере по сравнению с лабораторной ректификационной колонной обычного типа. Для разделения смеси, содержащей компоненты с сильно различающейся летучестью, требуются сложные многоступенчатые газовые хроматографы или приборы с программированием температуры термостата. Поэтому при современном уровне развития техники целесообразно начинать фракционирование с тщательной разгонки на колонке, а полученные фракции с узким интервалом температур кипения затем анализировать или разделять посредством газо-жидкостной хроматографии. Таким образом, оптимальным вариантом можно считать комбинирование обоих методов. [c.217]

    Во ВНИИ НП для анализа таких газов применяют метод газо-жидкостной хроматографии, с использованием полярных и неполярных жидких фаз, и газо-адсорбционной хроматог рафии с применением природных синтетических и модифицированных адсорбентов [П. Сочетание этих методов дает возможность анализировать газовые смеси, содержащие 20—25 компонентов, за 35—40 мин. Для анализа используется лабораторный хроматограф ХЛ-3 (с дифференциальным детектором по теплопроводности и полупроводниковыми термисторами в качестве чувствительных элементов мостовой схемы), серийно выпускаемый отечественной промышленностью [21. [c.79]

    Проявительный метод является наиболее распространенным методом хроматографического анализа, особенно часто он применяется в газовой и газо-жидкостной хроматографии. Существенным [c.9]

    Недостатком метода является то, что зоны компонентов не разделены зоной чистого растворителя, поэтому всегда имеет место более или менее заметное наложение зоны одного вещества на зону другого. Этот недостаток особенно резко проявляется при анализе газов, поэтому вытеснительный анализ не нашел себе применения в газовой и газо-жидкостной хроматографии. [c.11]

    В последние годы широкое распространение получили методы газовой и газо-жидкостной хроматографии, позволяющие автоматически контролировать содержание различных серусодержащих компонентов в многочисленных производственных объектах. [c.6]

    МЕТОДЫ ГАЗОВОЙ И ГАЗО-ЖИДКОСТНОЙ ХРОМАТОГРАФИИ [c.145]

    Методы газовой (ГХ) и газо-жидкостной хроматографии (ГЖХ) успешно применяются для отделения и разделения многих соединений серы. Разделение смесей серусодержащих ионов на различных твердых носителях методом ГЖХ рассмотрено в работе [60]. [c.145]

    Для анализа органических мышьяксодержащих соединений широко используются методы газовой и газожидкостной хроматографии [714, 1028, 10491 (см. раздел Газовая и газо-жидкостная хроматография ). [c.205]

    МЕТОДЫ ГАЗОВОЙ И ГАЗО ЖИДКОСТНОЙ ХРОМАТОГРАФИИ [c.141]

    Метод газовой хроматографии был применен для определения содержания адамантана в некоторых нефтях Кавказа и Коми АССР. После концентрирования адамантана во фракции нефти н. к. — 250° С с помощью тиомочевины полученные экстракты анализировались методом капиллярной газо-жидкостной хроматографии (длина колонки 100 м, внутренний диаметр 0,25 мм, неподвижная фаза — сквалан). Количественное содержание адамантана определяли методом внутреннего стандарта, в качестве которого служил синтетический адамантан, идентифицированный по инфракрасным и масс-спектрам. [c.101]

    Температура в утке поддерживалась термостатом с точностью 0,5° С. Для гидрирования использовался электролитический водород. Система перед опытом продувалась азотом и водородом, после чего в утку загружался в токе водорода катализатор в небольшом количестве растворителя. Катализатор насыщался водородом до прекращения изменения объема газа в бюретке. Загрузка циклогептатриена в опыте составляла 0,18 г (0,002 моля) катализатора 0,05-0,5 г, растворителя 20 мл. В качестве растворителя использовали н-гептан и этиловый спирт. Опыты проводили при температурах 20—30° С. Началом гидрирования считали момент включения электродвигателя, приводящего в движение качалку. Скорость поглощения замерялась по газовой бюретке. Анализ продуктов реакции производился методо.м газо-жидкостной хроматографии на хроматографе ХЛ-4 с детектором по теплопроводности. Стационарная фаза — триэти-ленгликольглутарат (20%) на кизельгуре, дл ина колонки 2 м, температура 100°С, газ-носитель гелий. Расчет хроматограмм выполнялся методом внутреннего стандарта. В качестве стандарта применялся н-диоксан. [c.94]

    Газо-адсорбционный метод этих недостатков не имеет. Основным его недостатком является лишь нелинейность изотерм адсорбции, приводящая к несимметричности пиков. Эта нелинейность связана с геометрической и химической неоднородностью поверхности обычных активных адсорбентов. Особенно резко она проявляется в случае сильно адсорбирующихся молекул. Неоднородность и высокая адсорбционная, а иногда и каталитическая активность обычных адсорбентов ограничивает их применение в газовой хроматографии. Поэтому такие адсорбенты применяются в основном лишь для анализа газообразных веществ, не содержащих активных функциональных групп, изотермы адсорбции которых при используемых в хроматографии концентрациях и температурах близки к линейным. После появления ряда работ 1947—1954 гг., в частности работ Классопа [14], Филлипса [15], Туркельтауба [16], Кремер [17], Янака [18] и Рэя [19], газо-адсорбционный метод хроматографии до начала 60-х годов рассматривался лишь как метод, дополняющий газо-жидкостную хроматографию для разделения газов и паров низкокипящих веществ, так как в этом случае разделительная способность жидких фаз благодаря малой растворимости газов недостаточна [20]. [c.8]

    Разделение стереоизомерных нормальных олефинов методом препаративной газо-жидкостной хроматографии. (Совместно с Е. А. Михайловой и А. И. Дьяченко).— В кн. Газовая хроматография. Труды Второй Всесоюзной конференции. М., Наука , 1964, стр. 223—226. [c.61]

    Полнота и скорость разделения веществ зависят от природы подвижной и неподвижной фаз, в частности от их афегатного состояния. Подвижная фаза может быть газом или жидкостью, в зависимости от этого различают методы газовой и жидкостной хроматографии. Неподвижной фазой могут служить твердые вещества и жидкости, соответственно различают методы газотвердофазные и газожидкостные, а также жидкостнотвердофазные и жидкостножидкостные. [c.55]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    Газовый хроматограф Цвет-1-64 представляет собой лабораторный прибор, изготовленный в обыкновенном (не взрывозащищен-ном) исполнении. Предназначен он для анализа смеси органических (с концентрацией от 1 10" до 10%) и неорганических (от ЫО" до 100%) веш,еств, кипящих до 350—400° С и не содержащих агрессивных примесей, способных разрушать стальные детали прибора. Он состоит из трех блоков 1) датчика, состоящего из термостата, катарометра, детектора пламенно-ионизационного (ДИП), испарителя жидкой пробы, газового крана-дозатора 2) блока управления БУ-2, состоящего из панели подготовки газов, усилителя ПВ-2М для ДИП, терморегулятора, блока питания детектора ДИП, блока питания катарометра 3) автоматического самопишущего потенциометра ЭПП-09. Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии на набивных (аналитических), микронабивных и капиллярных колонках в изотермическом режиме. [c.170]

    Масс-спектрометрия является важнейшим методом регистрации образования и превращений ионов в газовой фазе. В этом случае молекулярный пучок ионов негюсредственно вытягивается высоким вакуумом из реактора, в котором происходят исследуемые процессы. Наряду с этим метод нашел ншрокое применение для исследования незаряженных частиц — молекул и свободных радикалов. В этом случае анализируемая проба предварительно поступает в ионный источник, где частицы подвергаются ионизации, чаще всего с помощью пучка ускоренных электронов. Проба может вытягиваться высоким вакуумом из реактора, в котором протекает изучаемая газовая реакция, из баллона напуска, в котором испаряется исследуемый образец жидкости или твердого тела, из газо-жидкостного хроматографа, в котором проходит предварительное разделение компонентов исследуемой реакционной смеси. Метод обладает высокой чувствительностью и позволяет анализировать вещества с упру-1 остью пара до 10 Па. [c.44]

    В 1952 г. А. Мартином и Л. Джеймсом были получены первые результаты в области газо-жидкостной хроматографии. Эти работы вызвали огромное число исследований, направленных на развитие метода газовой хроматографии. За короткое время были усовершенствованы конструкции систем ввода проб, созданы чувствительные детекторы. Метод газовой хроматографии — первый из хроматографических методов, получивший инструментальное обеспечение. Видное место в области теории и практики газовой хроматографии занимают работы советских ученых Н. М. Туркельтауба, А. А. Жуховицкого, К. В. Чму-това, А. В. Киселева, К. И. Сакодынского, В. Г. Березкина, О. Г. Ларионова, М. С. Видергауза, Я. И. Яшина. [c.583]

    Существует еще много Других методов хроматографии — осадочная, газовая, газо-жидкостная и др., однако наибольшее значение при работе с веществами биохимического значения, антибиотиками, лекарственными препаратами и др. имеют ионообменная и распределительная хроматографии. Успехи ионообменной хроматографии в значительной мере обусловлены развитием синтеза ряда специальных ионообменных полимеров или смол (ионитов). Различают два основных вида ионитов 1) катиониты, способные к обмену катионов, представляющие собой сетку высокол олекулярных полиэлектролитов с многочисленными yльфoгpyппa п (рис. 44) карбоксильными группами и др. (амберлит Л7 -100, дауэкс-50, отечественные КВ-4, СБС и др.) и 2) аниониты, способные к обмену анионов (ОН , С1- и др ) и представляющие собой сетку высокомолекулярных катионов (амберлит Л/ А-400, дауэкс-2, вофатит-М, отечественные ЭДЭ-10, ПЭК и др.). Поглотительные емкости ионитов доходят до 3—10 мэкв на 1 г ионита. Имеются также окислительно-восстановительные иониты (получаемые псли-конденсацией гидрохинона, пирогаллола и пирокатехина с формальдегидом и фенолом), иониты с оптически-актив-ными группировками (для разделения оптических изоме- [c.129]

    Газо-жидкостная хроматография. Если стационарная фаза в хроматографических системах должна быть либо твердой, либо жидкой, то подвижная фаза может быть и газообразной. Соответственно существуют две системы газовая хроматография па твердой фазе и газо-жидкостпая хроматография (ранее эти методы называли газовой хроматографией),Метод газо-жидкосгной хроматографии, который получил более широкое применение в органической химии, состоит в следующем. Образец вводят в нагреваемую систему, откуда вещества в виде паров выносятся инертным газом (подвижная фаза — азот, гелий, аргон) и проходят через стационарную жидкую фазу, покрывающую частицы твердого носителя (кизельгур, целит) или располагающуюся в виде поверхностных пленок в капиллярах. Распределение происходит между жидкой и газовой фазами, и компоненты смеси передвигаются только за счет движения газовой фазы. При постоянных условиях опыта (носитель, стационарная фаза, скорость потока, давление и температура) время удержания, т, е. время от момента введения образца до выхода вещества из колонки, является характерным для каждого соединения. Площадь пика служит мерой количества вышедшего соединения. [c.23]

    Мышьяк образует ряд легколетучих соединений, в том числе арсин, трихлорид, трибромид, трииодид, эфиры мышьяковистой кислоты (гликолевые, глицериновые), много различных легкокипящих мышьякорганических соединений (триметиларсин, трифениларсин и др.). Поэтому методы газовой и газо-жидкостной хроматографии в аналитической химии мышьяка используются довольно часто. Очень высокая чувствительность определения и чрезвычайно высокая разделяющая способность, непосредст-веппое сочетание самого разделения с определением выделенного компонента, малая продолжительность анализа и возможность практически полной автоматизации анализа делают методы газовой и газо-жидкостной хроматографии весьма перспективными в аналитической химии мышьяка. [c.138]

    Хроматографические методы классифицируют по следующи признакам I) по агрегатному состоянию смеси, в которо проводят ее разделение на компоненты,— газовая, жидкостнг и газо-жидкостная хроматография 2) по механизму разделения -адсорбционная распределительная, ионообменная, осадочная, ок1 слительно-восстановительная, адсорбционно-комплексообразов тельная хроматография 3) по форме проведения хроматограф ческого процесса—колоночная, капиллярная, плоскостная (бума>1 ная, тонкослойная и мембранная). [c.330]


Смотреть страницы где упоминается термин Методы газовой и газо-жидкостной хроматографии: [c.254]    [c.18]    [c.92]    [c.148]   
Смотреть главы в:

Аналитическая химия серы -> Методы газовой и газо-жидкостной хроматографии

Аналитическая химия брома -> Методы газовой и газо-жидкостной хроматографии




ПОИСК





Смотрите так же термины и статьи:

ГазЬ-жидкостная хроматография

Газо-жидкостная хроматографи

Газовая хроматография газо-жидкостная хроматография

Газовая хроматография хроматографы

Жидкостная хроматография хроматографы

Метод газовой хроматографии

Хроматограф газовый

Хроматография газо-жидкостная

Хроматография газовая

Хроматография газовая, газо-жидкостная

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография методы

Хроматография, методы газо-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте