Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

галоидирование крекинг

    Галоидированные Крекинг-смолы. ... Нафталин, обработанный амилхлоридом и ди [c.341]

    Мой доклад называется Основные проблемы химической кинетики , Я решил, однако, сегодня затронуть только проблему свободных радикалов, рассказать о некоторых их свойствах, Это интересно потому, что, как теперь известно, появление свободных радикалов определяет течение очень большого числа химических реакций, в частности цепных реакций, к которым относятся такие важнейшие в промышленности реакции, как окисление, галоидирование, крекинг, полимеризация и многие другие. [c.3]


    В результате действия ионизирующих излучений на некоторые, вещества и смеси веществ могут протекать реакции, ведущие к -образованию технически важных продуктов. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров в результате сшивания, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окислов азота из воздуха и ряд других процессов. Особый интерес представляют цепные реакции под действием ионизирующего излучения. К таким реакциям относятся окисление углеводородов, их галоидирование, сульфоокисление, сульфохлорирование, полимеризация и др. [c.597]

    Крекинг-газы и галоидированный декагидро [c.335]

    По цепному механизму протекает большинство реакций горения и окисления, галоидирования, реакции крекинга, полимеризации и разложения углеводородов и некоторые другие реакции, применяемые в химической и нефтяной промышленности Теория цепных реакций была разработана академиком Н. Н. Семеновым с сотрудниками. [c.98]

    Это —немногие примеры, которые позволяют использовать сведения, представленные в таблицах различных каталитических реакций органических и неорганических соединений для анализов и сравнений. Катализаторы можно классифицировать также по присущим им функциям, т. е. как вещества, способствующие ослаблению связей, и как вещества, образующие промежуточные продукты присоединения. Первоначальные изменения, вызываемые хлористым алюминием, например в углеводородах, могут сводиться к активации водородных атомов, ведущей в некоторых случаях к ослаблению связей. Активация водородных связей проявляется при гидрогенизации и дегидрогенизации, а также конденсации в ароматическом ряду и в реакциях крекинга и обмена. Миграция галоидных атомов в углеродных цепях и циклах под влиянием хлористого алюминия наблюдается при реакциях изомеризации. Окись магния и титана, глины и некоторые природные земли способствуют разрыву углерод—углеродной связи. Наиболее типичные катализаторы для реакций галоидирования — это вещества, обычно применяемые в качестве носителей при реакциях в паровой фазе. Некоторые катализаторы способны к образованию двойных солей с реагирующими веществами в этом случае стабильность промежуточных продуктов определяет их каталитическое действие. [c.4]


    Предпосылки цепных реакций. Закономерности течения многих реакций окисления, горения, крекинга, полимеризации, галоидирования и другие выходят за рамки обычной химической [c.208]

    В конце 20-х и начале 30-х годов Н. Н. Семенов создал теорию цепных разветвленных реакций. В вышедшей в свет в 1934 г. монографии Цепные реакции автор с точки зрения цепной теории рассмотрел накопленный к тому времени большой экспериментальный материал. Эта монография и до настояш его времени вдохновляет и заражает энтузиазмом молодых ученых, изучаю-ш их кинетику химических реакций. Созданная Н. Н. Семеновым теория вызвала целый поток исследований в различных странах. В результате этих исследований было установлено, что огромное число важных химических процессов, таких как окисление, крекинг, галоидирование, полимеризация, протекает по цепному механизму. [c.6]

    Для описания кинетики многих цепных процессов, в том числе таких промышленно важных, как окислительная переработка нефтяных фракций, крекинг и галоидирование углеводородов, сополимеризация и т. д., приходится рассматривать сложные кинетические схемы реакций, включающие несколько веществ и активных центров. В каждом конкретном случае расчет таких кинетических схем представляет значительные трудности. В расчете обычно используют условие стационарности, что позволяет найти концентрации активных центров и получить выражения для скорости расходования каждого вещества в функции только концентраций реагирующих веществ и скорости инициирования. Подобные расчеты в литературе проводились в основном на примере реакций сополимеризации. Были получены уравнения скорости [181] и состава [182] для произвольного числа компонентов. Довольно подробно исследованы двухкомпонентные системы. [c.67]

    Эти процессы в энергетическом отношении характеризуются тем, что относительно небольшие порции энергии вызывают значительные химические эффекты полимеризацию, окисление органических соединений, галоидирование, процессы цепного разложения (в том числе крекинг) и т. д. [c.219]

    Цепными являются многие процессы окисления и горения, крекинга, полимеризации, галоидирования и др. Опыт показывает, что при. нагревании паров углеводородов, особенно под низким давлением (порядка 1—2 мм рт.ст. и ниже), образуются свободные радикалы. Поэтому в основу объяснения кинетики крекинга углеводородов была положена идея цепного механизма процесса с участием свободных радикалов. Хотя непосредственных данных для суждения о тех элементарных процессах, которые протекают при термическом крекинге углеводородов, пока нет, все же можно предложить такие схемы реакций с участием свободных радикалов, которые согласуются с опытными данными. Например, при крекинге пропана первые стадии процесса могут быть следующими  [c.188]

    В энергетическом отношении эти процессы характеризуются тем, что относительно небольшими порциями энергии (тепловой, химической, световой или ядерной) достигаются значительные химические эффекты. К этой группе относятся полимеризация, окисление органических соединений, галоидирование, процессы цепного разложения (крекинга), а также, с некоторой оговоркой (см. далее) процессы, возникающие в полимерах под действием излучений. [c.85]

    Большинство исследованных сложных превращений углеводородов в газовой фазе представляет собой цепные реакции (окисление, крекинг, полиме ризация, галоидирование и многие другие) [5]. В настоящее время химики приходят к выводу о том, что и многие жидкофазные (неионные), [c.86]

    Новый уровень кинетических исследований позволил перейти к познанию детального механизма ценных процессов и созданию на этой основе новых эффективных приемов управления такими важными нромып1ленными ироцессами, как окисление, галоидирование, крекинг, полимеризация. Н. Н. Семеновым был заложен ряд основополагающих представлений в этой области, позволивших с позиций химической физики рассмотреть проблемы гомогенного и ферментативного катализа. [c.3]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]


    Реакции галоидирования проводились молекулярными [72, 73, 80], и связанными галогенами [9, 72]. Хлорирование асфальтенов молекулярным хлором осуществлялось в растворе I4 в течение 0,5—8 часов в токе С г (скорость 60 мл/мин). Интенсивное присоединение хлора идет в первые 0,5 часа, при этом вводится до 377о хлора. Отношение Н/С =1,22 для исходных асфальтенов или отношение Н-ЬС1/С в хлорированных асфальтенах остается постоянным в течение двух часов. Таким образом, замещение водородных атомов хлором происходит в алкильных заместителях. При завершении хлорирования до 88% за 4—8 часов идет замещение водорода в ароматических кольцах, что составляет около 14% от общего количества. В отличие от хлорирования при бромировании отношение Н + Вг/С остается постоянным в течение всего процесса. При иодировании отношение H-f 1/С уменьшается, что говорит о дегидроиодировании. Другие авторы [81, 82] наблюдали в своих экспериментах процессы дегидрохлорирования при хлорировании асфальтенсодержащего сырья и смол. Ими же найдено, что хлорирование сопровождается потерей растворимости, связанной с уплотнением структуры. На этом свойстве основан предложенный способ получения искусственного асфальтита [83], заключающийся в хлорировании (в присутствии кислот Льюиса под давлением) полициклических ароматических соединений — продуктов высокотемпературного крекинга. [c.19]

    Б связи с открытием радикальных реакций в растворах в органической химии было успешно применено представление о ценных реакциях как ионного, так и, особенно, радикального характера. Учение о цепных реакциях было создано в советской стране на основании изучения кинетики газовых реакций. Перенесенное на область реакций в жидкой фазе, оно нашло применение при изучении важнейших для практики процессов цепной полимеризации, крекинга, фотохимического галоидирования, окисления. Построение теории ценной полимеризации открыло пути управления как скоростью процесса, так и степенью полимеризации, являющимися вансными параметрами химии высокомолекулярных соединений. [c.60]

    Развитие новой области химии — химии свободных радикалов — за последние десятилетия было обусловлено как большим теоритическим значением этих исследований, так и их практической важностью. Действительно, с открытием свободных радикалов и разработкой методов их изучения в руках исследователей оказалась новая форма существования вещества, форма исключительно химически лабильная. По мере все более глубокого проникновения в эту область становилось ясно, что при создании путей рационального управления такими важнейшими практическими процессами, как полное и неполное окисление (включая горение), термическая переработка нефтепродуктов (крекинг), полимеризация, галоидирование, некоторые электрохимические и фотохимические процессы и многие другие, необходимо надежно знать строение и химические свойства этих до последнего времени практически неуловимых частиц. В последнее время к списку областей химии, в которых радикалы играют, по-видимому, одну из ведущих ролей, добавились радиационная химия, химия электронного разряда (плазмохимия), все многообразие молекулярных биологических процессов, химия верхних слоев атмосферы и космохимия. [c.11]


Смотреть страницы где упоминается термин галоидирование крекинг: [c.573]    [c.525]    [c.18]    [c.19]   
Общая химическая технология органических веществ (1955) -- [ c.108 ]




ПОИСК







© 2025 chem21.info Реклама на сайте