Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбитальное вырождение, снятие ионов

    Однако очень часто вырождение орбитальных уровней отсутствует. Например, в солях железа и меди парамагнитные ионы металла находятся в обладающих низкой симметрией электрических полях, создаваемых молекулами и ионами окружения, которые приводят к снятию орбитального вырождения ( замораживание орбитального движения), и величина -фактора не совпадает с рассчитанной по формуле (1Х.З), а оказывается близкой к чисто спиновому значению 2. [c.226]


    Вопрос о том, какая гибридизация возникает при введении атома в ту или иную молекулу или кристалл, решается таким же путем, какой мы продемонстрировали, рассматривая зр2-гибридизацию. Если предполагается, что данное вещество может иметь несколько структур, то вопрос о том, какова она, решается лишь при расчете энергии состояния системы. При этом следует учитывать, что в вырожденном электронном состоянии конфигурация нелинейной молекулярной системы изменяется так, что вырождение оказывается снятым (теорема Яна—Теллера). Теорема Яна—Теллера помогает понять связь некоторых свойств молекул и кристаллов с их симметрией. Так, например, ионы переходных металлов, орбитальное состояние которых является вырожденным вследствие их симметрии, в октаэдрических полях образуют комплексы не с октаэдрической, а с более низкой симметрией, например тетрагональной. Вследствие снятия вырождения у иона в кристалле его энергия уменьшается, что обеспечивает комплексу большую устойчивость. [c.92]

    Для ионов (Р-, и д приведенное вырождение низшего состояния не соответствует только спиновому вырождению. Однако из теории следует [4, 37], что эти ионы, которые без спин-орбитального взаимодействия имеют орбитальное вырождение, вероятно. должны иметь очень небольшие искажения, приводящие к снятию орбитального вырождения и оставляющие ион в дважды вырожденном состоянии (или даже в синглетном, если он имеет [c.451]

    У иона в S-состоянии (например, Мп +) нет орбитального вырождения. Однако кристаллическое поле может вызвать некоторое снятие спинового вырождения (разд. 11-8). [c.296]

    Однако в большинстве случаев парамагнитные частицы, исследуемые методом ЭПР, не являются свободными атомами. Неспаренные электроны находятся в сравнительно сильных электрических полях кристаллической решетки или сольватной оболочки (в случае растворов парамагнитных ионов), или окружающих атомов и валентных электронов химических связей. Все эти поля редко имеют сферическую симметрию. Наличие электрических полей может привести к полному или частичному снятию орбитального вырождения и через спин-орбитальную связь повлиять на Зеемановское расщепление. Как мы увидим дальше, в спектрах ЭПР жидких и твердых образцов это может проявиться в смещении "-фактора за пределы, значительно превосходящие указанные в формуле (3.11), к появлению анизотропии й -фактора и так называемой тонкой структуры спектров ЭПР. В дальнейшем все внешние по отношению к неспаренным электронам электрические поля мы будем называть кристаллическими полями , а все окружение парамагнитного атома — кристаллической решеткой или просто решеткой , хотя речь может идти об аморфных или жидких образцах или даже об отдельных молекулах.  [c.42]


    Наиболее подробно ферриты-хромиты никеля исследовались в работах Николаева с сотр. [57, 59—64]. В частности, было показано, что вероятной причиной появления довольно большого квадрупольного расщепления мессбауэровских линий в А-подрешетке (А = 0,4—0,5 мм/сек) является присутствие кислородных вакансий в структуре шпинели [57, 64]. Наличие кислородной вакансии в ближайшем окружении А-иона Ре + искажает кубическую симметрию окружения и под действием кристаллического поля приводит к снятию вырождения Зс -уровней по орбитальному моменту. Этот эффект и проявляется в мессбауэровских спектрах. [c.29]

    В органических свободных радикалах обычно неспаренный электрон находится на сильно делокализованных орбиталях и вырождение орбитальных уровней снято. Например, в ион-радикале /г-бензосемихиноне [c.226]

    При рассмотрении конфигураций, у которых погашение орбитального углового момента должно быть неполным, следует учесть, что орбитальное вырождение основных состояний (следствием которого является возникновение остаточных орбитальных угловых моментов) может быть снято как за счет спин-орбитального взаимодействия, так и вследствие наличия нолей лигандов с симметрией ниже октаэдрической (нанример, тетрагональной или тригональпой). Если пренебречь сначала полями низкой симметрии, можно точно вычислить магнитные моменты каждой из рассматриваемых конфигураций в зависимости от константы спин-орбитального взаимодействия и температуры. Результаты таких вычислений приведены на рис. 81 [44а]. Если рассматриваемая конфигурация возникает вследствие расщепления /"-терма свободного иона, необходимо рассмотреть два приближения 1) когда поле лигандов является слабым по [c.395]

    Несколько сложнее второй этап расчета, когда интересующее пас электронное состояние вырождено по орбитальному движению. Такой случай иногда реализуется в свободных радикалах и ионах группы железа в симметричных кристаллических полях. В таких случаях часто бывает необходимо учитывать взаимодействие парамагнитной частицы с матрицей. Другой причиной, которая также может приводить к снятию орбитального вырождения, является электронно-колебательное взаимодействие, которое приведет к деформации структуры парамагнитной частицы . Для результирующей деформированной невырожденной структуры спин-га-иильтониан определяется обычным образом. Мы не будем здесь входить в детали этой достаточно специфической области. Многие относящиеся сюда вопросы читатель может найти в соответствующих монографиях [5, 6]. [c.10]

    Из материала, изложенного в этой главе, легко видеть, что теория спектров ЭПР наиболее полно разработана для парамагнитных ионов переменной валентности в кристаллических полях разной симметрии. Теория спектров ЭПР органических свободных радикалов — объектов, наиболее интересных для химии, находится в самой начальной стадии развития. Совершенно неудовлетворительно обстоит дело с теорией смещения g-фактора и его анизотропии для органических структур, в которых снятие орбитального вырождения обусловлено не электрическими полями кристаллической решетки, а обменными взаимодействиями. Из-за отсутствия этой теории для химика потерян важный догюлнительный источник информации, которую могли бы дать спектры ЭПР органических свободных радикалов. До сих пор остается неясным вопрос о связи распределения спиновой и зарядовой плотностей, что имеет прямое отношение к механизму и кинетике радикальных реакций. Список таких нерешенных проблем можно было бы продолжить. Таким образом, спектроскопия электронного парамагнитного резонанса является благодарной областью работы для физиков-теоретиков, заинтересованных в том, чтобы их исследования помогали решению важных химических проблем. [c.85]

    Теоретич. анализ энергетич. состояний молекул проводят, как правило, с помощью упрощенных моделей, не учитывающих в полной мере всех взаимод. в системе ядер и электронов. При этом характерно появление В. э. у., к-рое, однако, снимается при переходе к моделям более высокого уровня. Так, при оценке первых потенциалов ионизации молекулы СН по методу молекулярных орбиталей получают 4-кратное вырождение основного электронного состояния иона СН4, к-рое отвечает удалению электрона с одной из четырех локализованных молекулярных орбиталей связи С—Н. Модели, более полно учитывающие электронную корреляцию (см. Конфигурационного взаимодействия метод), предсказывают снятие 4-кратного вырождения и появление 3-кратно вырожденного и одного невырожденного уровня (при сохранении эквивалентности всех четырех С—Н связей). Соответственно для молекулы СН должны наблюдаться хотя бы два различных, но близких по величине потенциала ионизации, что подтверждено экспериментально. Точно так же учет колебательно-вращат. взаимодействий снимает вырождение вращат. состояний молекул снятие случайного вырождения колебат. состояний связывают с учетом ангармоничности потенциальных пов-стей спин-орбитальное взаимод. частично снимает В.э.у. с различными значениями проекции спина на ось. Для квантовой химин очень важен эффект снятия вырождения электронных состояний молекулы при изменении ее ядерной конфигурации. Так, учет электронно-колебат. взаимодействия снимает упомянутое выше 3-кратное В. э. у. иона СН и объясняет колебат. структуру фотоэлектронных спектров СН,. [c.440]


    В табл. 18 приведены параметры спнн-гампльтониана некоторых комплексов, центральный ион которых имеет конфигурацию d . Если кристаллическое поле обладает октаэдрической симметрией, то основное состояние вырождено и состоит из двух орбитальных состояний, не связанных спин-орбитальным взаимодействием. Можно ожидать, что для этого состояния искажение, обусловленное эффектом Яна — Теллера, будет большим, и ЭПР можно наблюдать при температурах, значительно более высоких, чем температура жидкого гелия. При симметрии кристаллического поля, близкой к октаэдрической, ЭПР иона Си -+ наблюдается, хотя линия поглощения широкая. Еслн же искажение кристаллического поля значительное, то линии ЭПР узкие даже при комнатной температуре. Так как тригональное искажение не может снять вырождения основного состояния, то искажение должно быть тетрагональным или ромбическим. При тетрагональной симметрии искажение может сводиться к удлинению связей вдоль оси z. При этом основным состоянием становится состояние с неспаренным электроном на орбитали (ху) и в рамках метода кристаллического поля компоненты -тензора определяются равенствами [c.427]

    Окись азота N0. Несмотря на то что окись азота является одним из очень немногочисленных устойчивых неорганических радикалов, о ее спектре ЭПР можно сказать немного. 2 от радикал детально исследовался в газовой фазе, но никогда не был однозначно идентифицирован ни в одной конденсированной среде [17]. Отсутствие сигнала ЭПР у захваченного радикала окиси азота в матрицах из инертных газов не удивительно, поскольку в этом случае взаимодействие с окружением не может эффективно погасить орбитальный момент. Тем не менее вполне возможно, что взаимодействие с окружением ионного кристалла могло бы в достаточной степени снять вырождение я-орбиталей. Мы не считаем [20], что радикал N0 был действительно обнаружен, хотя сообщения об этом и появлялись [18, 19]. Всевозможные спектры, которые приписьшались этому радикалу, по-видимому, более удовлетвари-тельно интерпретируются как принадлежащие другим парамагнитным частицам. Напомним, что окись азота легко входит в качестве лиганда в комплексы с ионами переходных металлов в низких степенях окисления, и, если возникающий при этом комплекс парамагнитен, атом азота группы N0 часто вносит значительный вклад в результирующий спектр комплекса. Однако анализ анизотропных спектров различных комплексов такого типа показал, что неспаренный электрон обычно в значительной мере локализован на -орбитали переходного металла и лиганды отнюдь не похожи просто на возмущенную молекулу N0 [21]. [c.126]

    Основной терм иона Си " является теперь орбитально синглетным. Как уже указывалось выше, спиновое вырождение (двукратное для одного, неспаренного электрона) может быть снято в этом случае только с помощью-магнитного поля. При достаточно сильном кристаллическом поле (что имеет место в рассматриваемом случае), возбужденные орбитальные уровни лежат настолько выше основного (по крайней мере, по сравнению с Зеема-новским расщеплением), что ими в нулевом приближении можно пренебречь. Таким образом, речь может идти о спиновом магнитном резонансе, а орбитальные магнитные моменты оказываются замороженными полем, кристаллической решетки. Это явление носит название гашения орбитального момента. Именно в связи с этим величина -факторов сигналов. ЭПР многих парамагнитных атомов в конденсированных фазах и практически всех органических свободных радикалов сравнительно не сильно отличаются от чисто спинового значения, хотя соответствующие неспаренные электроны могут быть с1- или р-электронами с неравными нулю орбитальными моментами. [c.62]

    Согласно теореме Яна-Теллера, системы, основное состояние которых орбитально вырождено, за некоторым искл-юче-нием, являются неустойчивыми. Вследствие этого существует тенденция к снятию вырождения путем понижения собственной симметрии. Так, в комплексах, содержащих ионы переходных элементов, основное состояние которых орбитально вырождено, может происходить спонтанное искажение окружения этих ионов и соответственно снижение симметрии кристаллического поля и снятие вырождения (эффект Яна-Телле-ра, в дальнейшем сокращенно ЯТ). [c.75]


Смотреть страницы где упоминается термин Орбитальное вырождение, снятие ионов: [c.99]    [c.383]    [c.201]    [c.48]   
Теория и практические приложения метода ЭПР (1975) -- [ c.3 , c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Вырождение



© 2024 chem21.info Реклама на сайте