Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры поглощения теория

    Описание комплексных соединений с позиций ТВС было дано на с. 97. В настоящее время теория валентных связей применительно к комплексным соединениям потеряла свое былое значение. При всех своих достоинствах она не объясняет ряд важных свойств соединений, в частности их спектры поглощения, детали магнитных свойств и др. [c.504]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]


    Применение методов магнитной восприимчивости в совокупности с данными по электронным спектрам поглощения может оказаться плодотворным для установления структур комплексных соединений. Так, согласно теории кристаллического поля низкоспиновые и высокоспиновые комплексы ионов переходных металлов [c.198]

    Поразительная специфичность действия ферментов привела к созданию теории замка и ключа, согласно которой для протекания реакции необходимо точное структурное соответствие между субстратом и активным центром фермента. Проведенные эксперименты убедительно доказали адекватность этой идеи, однако сама теория претерпела существенное изменение. Считается, что если фермент — это замок , а субстрат — ключ , то введение ключа в замок часто индуцирует конформационные изменения в молекуле белка. Имеется множество работ, в которых показано, что фермент укладывается вокруг субстрата, обеспечивая более точное соответствие подгоняемых структур. В пользу этого говорят данные по изменению спектров кругового дихроизма, спектров поглощения в УФ-области и констант седиментации, а также результаты исследования структуры комплексов ферментов с ингибиторами методом рентгеноструктурного анализа. Как мы уже видели ранее (гл. 4, разд. Д, I), идея индуцированного соответствия оказывается весьма плодотворной и при обсуждении взаимодействий субъединиц. [c.42]

    Наиболее важно применение эффекта Фарадея, а именно магнитного кругового дихроизма, в относительно высокосимметричных системах, таких, как координационные соединения, ароматические соединения и биологически активные соединения. Этот метод имеет значительные преимущества перед методом электронных спектров поглощения. Однако слишком еще преобладает эмпирический подход в анализе экспериментальных данных. Необходимо дальнейшее развитие теории метода. [c.262]

    Спектры поглощения координационных соединений. Координационные соединения большинства переходных металлов окрашены. Согласно теории кристаллического [c.125]

    Теперь можно составить представление о спектре поглощения многоатомной молекулы. Если данное -ое колебание активно в ИК-спектре, то наиболее вероятен переход г/= 1 о =0. Ему отвечает в спектре полоса с частотой V, равной собственной частоте нормального колебания как следует из теории гармонических колебаний  [c.174]

    Объяснение спектров поглощения и окраски комплексов требует в большинстве случаев использования сложной теории. Вместе с тем при качественном подходе можно считать, что различие в окраске комплексов данного комплексообразователя определяется величиной Д. При увеличении Д поглощение сдвигается в сторону высоких частот, при уменьшении — в сторону низких частот. [c.199]


    Уменьшение магнитной восприимчивости можно также объяснить иным образом (разд. 6.5.5) на основе исследований Ван Флека. Преимущество предложенной им теории состоит в том, что она правильно учитывает особенности спектров поглощения комплексных соединений. [c.128]

    В табл. 1.13 для некоторых комплексов приведены величины Д, определенные из спектров поглощения, вычисленные значения энергии Р и данные о спиновом состоянии иона, полученные по результатам исследования магнитных свойств соединений. Как видно, приведенные в табл. 1.13 сведения находятся в соответствии с теорией кристаллического поля. [c.134]

    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]

    Илзе и Хартман первыми обратили внимание химиков на ценность теории кристаллического поля для изучения спектров поглощения комплексов, применив ее к единственной слабой полосе поглощения -системы Максимум светопоглощения [c.295]

    Теория кристаллического поля позволяет объяснить многие физико-химические свойства комплексов (спектры поглощения, магнитные свойства), их геометрическую конфигурацию. Так, наиболее ранним применением ТКП было объяснение магнитных свойств комплексных соединений. Последние определяются величиной Л и энергией спаривания электронов. Вещества, содержащие атомы с неспаренными электронами, парамагнитны (притягиваются магнитом), а вещества, содержащие только электронные пары, диамагнитны (магнитом не притягиваются). [c.382]

    Молекулярный механизм. Молекулярная теория резонансного поглощения аналогична молекулярной теории формы и ширины линии в спектре поглощения (см. рис. 153) и тесно связана с теорией формы и ширины линии в эмиссионном спектре. При смещениях электронов три процесса, приводящие к рассеянию энергии, имеют важное значение затухание вследствие излучения, соударения и эффект Допплера. При относительных смещениях атомов или ионов в молекуле второй из этих процессов имеет наибольшее значение. Поэтому мы будем рассматривать только его. [c.362]

    Теория ковалентных связей правильно подсказывает возможно значение координационного числа, дает ценные сведения о стро ении комплексных соединений и объясняет их магнитные свойства Однако она не объясняет некоторые свойства комплексны) соединений, а именно, оптические свойства (цвет комплексны) соединений, спектры поглощения). В связи с этим в последне( время большое значение получили теории кристаллического пол) и молекулярных орбиталей. [c.136]

    Метод крайне полезен при расшифровке неизвестных структур, так как некоторые химические группы (метильная, карбонильная и др.) имеют характеристические полосы поглощения, положение и интенсивность которых более или менее постоянны. Такие групповые частоты можно переносить от одного соединения к другому. Более детально групповые частоты будут обсуждены после краткого введения в теорию ИК-спектров поглощения. [c.135]

    Данные по спектрам поглощения растворов солей показали, что молярные коэффициенты поглощения при разных длинах волн, рассчитываемые как DJ , не изменяются в широкой области концентраций электролита фх —оптическая плотность при длине волны X, с—концентрация раствора исследуемого электролита). Этот факт не мог быть объяснен теорией электролитической диссоциации Аррениуса, поскольку с уменьшением концентрации электролита должно было происходить увеличение степени диссоциации и, следовательно, изменение спектров поглощения. Полная диссоциация сильного электролита объясняла постоянство молярных коэффициентов поглощения, поскольку при всех концентрациях раствора светопоглощающими частицами оставались одни и те же ионы. Аналогичный характер имеет концентрационная зависимость вращения плоскости поляризации и ряда других свойств растворов сильных электролитов. Теория электролитической диссоциации не может объяснить постоянство теплот нейтрализации хлорной, соляной и других сильных кислот гидроксидами щелочных металлов. Однако это можно объяснить полной диссоциацией реагентов при всех концентрациях и протеканием реакции нейтрализации как взаимодействия ионов Н+ и ОН" по схеме Н+ + ОН = НгО. [c.438]


    Расчеты молекулярных сил, действующих на больших расстояниях между телами, требуют знания только статических значений диэлектрической проницаемости ео или п (см. 4). Для расчета молекулярных сил при меньших, чем 0,1 мкм, толщинах прослойки необходимы полные сведения о всей частотной зависимости диэлектрической проницаемости для всех взаимодействующих тел. Долгов время использование уравнений макроскопической теории молекулярных сил было затруднено как раз в связи с недостаточной изученностью спектров поглощения в" (со) в большом интервале частот — от микроволновых до рентгеновских. [c.82]

    В этой главе мы не будем рассматривать изменения спектральных характеристик, которые обусловлены индуцированной средой химической модификацией молекул, содержащих хромофор, в том числе переносом протона или электрона от растворенного вещества к растворителю или, наоборот, вызванными растворителем ассоциацией, ионизацией, комплексообразо-ванием или равновесной изомеризацией. Во всех теориях, объясняющих влияние растворителей на спектры поглощения, цри- [c.403]

    Хлориды кобальта при растворении в воде образуют ра-творы розового цвета однако при введении раствора соляной кислоты или различных органических растворителей розовая окраска переходит в синюю или голубую. Предложены различные теории, объясняющие эти переходы окраски [269, 804]. В настоящее время синюю. окраску солянокислых растворов кобальта связывают с образованием комплексных анионов o lJ и СоС Г. Эта точка зрения подтверждается, в частности, тем, что при электролизе солянокислых растворов кобальта последний передвигается к аноду [638]. Кривая светопоглощения хлоридного комплекса кобальта имеет максимум при 660—670 ммк, причем положение максимума зависит от концентрации НС1. При прибавлении H I к водному раствору перхлората или сульфата кобальта максимум светопоглощения сдвигается от 510 ммк (аквоион кобальта) в более длинноволновую область и в 4—5Л/НС1 наблюдаются три максимума при 625, 660 и 685 ммк [1514]. При дальнейшем увеличении концентрации НС1 появляется еще один максимум при 395 ммк. При детальном исследовании спектров поглощения водных растворов хлорида кобальта в области длин волн от 220 до 1800 ммк было показано [24,25], что в [c.17]

    Теория влияния растворителей на спектры поглощения в УФ- и видимом диапазонах [c.420]

    СПЕКТРОФОТОМЁТРЙЯ, метод исследования и аналюа в-в, основанный на измерении спектров поглощения в оптич. области электромагн. излучения. Иногда под С. понимают раздел физики, объединяющий спектроскопию (как науку о спектрах электромагн. излучения), фотометрию и спектрометрию [как теорию и практику измерени<г соотв. интенсивности и длины волны (или частоты) электромагн. излучения] на практике С. часто отождествляют с оптич. спектроскопией. По типам изучаемых систем С. обычно делят на молекулярную и атомную. Различают С. в ИК, видимой и УФ областях спектра (см. Инфракрасная спектроскопия. Ультрафиолетовая спектроскопия). [c.396]

    Лучше это можно проследить на соединениях, содержащих ароматические радикалы, так как их спектры лежат в области доступной обычным спектральным приборам, и они лучше изучены. Пока атом серы отделен от ароматического хромофора несколькими насыщенными углеводородными звеньями, спектр почти количественно является суммой спектров поглощения алкилсульфида и алкиларила. При непосредственной связи атома серы с ароматическим радикалом тонкая структура спектра, характерная для последнего, исчезает, интегральная интенсивность поглощения резко возрастает. В большинстве случаев изменяется не только форма и интенсивность полос поглощения, но и их положение относительно соответствующих параметров монофункциональных соединений (насыщенных соединений серы и ароматических или непредельных углеводородов). Отсутствие аддитивности в ультрафиолетовых спектрах непредельных (в.том числе ароматических) органических соединений двухвалентной серы свидетельствует о наличии более или менее значительного взаимодействия 1г-связей с неподеленными Зр-электронами атома серы, осложненного, вероятно, влиянием Зй-орбиталей серы. Фрагмент структуры, состоящий из ненасыщенного элемента с присоединенной к нему серой становится новым хромофором, с характерным для него спектром, а присоединенные к нему углеводородные насыщенные радикалы действуют на спектр поглощения как ауксохромы. Вопрос же о характере взаимодействия электронной оболочки атома серы с тг-электронами ненасыщенных хромофоров в настоящее время еще не решен, теория явления стала предметом оживленной дискуссии, по-видимому, еще далекой от завершения. [c.162]

    Спектры поглощения координационных соединений. Координационные соединения большинства переходных металлов окрашены. Согласно теории кристаллического . поля ответственным за окраску "Ш-является комплексный ион, неор- Чуюо -ганический хромофор (РГоргенсен).  [c.125]

    В табл. 19 приведены для различных комплексов определенные из спектров поглощения величины Д, вычисленные значения Р и данные о спиновом состоянии иона, полученные из магнитных измерений. Как видно, приведенные в табл. 19 сведения находятся в соответствии о вышеизложенным. Таким образом, теория кристаллического поля ус> танавливает количественную взаимосвязь между магнитными и спектральными характеристиками комплексов, что не удается сделать с помош,ью метода валентных связей. [c.224]

    Симметрия. молекулярной орбитали во многом определяется симметрией равновесной конфигурации молекулы. Следовательно, от симметрии молекулы зависят правила отбора в спектрах поглощения и испускаш1я и распределение электронной плотности. Молекулы, обладающие центром симметрии (Д, <Х и др.), — неполярны, например Вер2 и, неполярны также молекулы высокой симметрии, хотя и не имеющие центра, симметрии, как, например, тетраэдрические СН4, СС1(4 и другие (3 ), плоские ВРз, А1Рз и другие (1>з ). Если равновесная конфигурация молекулы известна, то существование или отсутствие дипольного момента может быть точно предсказано на основании соображений симметрии при помощи теории групп. В свою очередь измерение дипольного момента может указать на геометрию равновес- [c.176]

    Теория кристаллического поля. В основе теории лежат фундаментальные труды Бете (1929) и Ван Флека (1932). Первоначально теория рассматривала расщепление ато1У1ных термов в кристалле и применялась для объяснения магнитных свойств кристаллов. Впоследствии она была использована также для объяснения спектров поглощения и ряда других свойств комплексных соединений переходных металлов и лантаноидов. Основные идеи теории  [c.237]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Для катионов с недостроенной 18-электронной оболочкой в меньшей степени применимы простые электростатические представления, основанные на законе Кулона. Такие электронные оболочки при действии электроотрицательных лигандов деформируются значительно больше, чем 8-электронные оболочки катионов, и доля ковалентности химической связи металл — лиганд сильно возрастает. Изменение устойчивости комплексов элементов четвертого периода можно объяснить с позиций усовершенствованной электростатической теории, которая принимает во внимание не только чисто кулоновское взаимодействие между частицами, но и форму орбиталей -электронов. Речь идет о теории кристаллического поля, созданной в 30-х годах этого столетия физиками Г. Бете и Ван-Флеком и позже примененной химиками для объяснения спектров поглощения и магнитных свойств комплексов переходных металлов. [c.250]

    Для люминесцеиции характерно то, что часть энергии возбуждения неизбежно теряется в виде тепла. Поэтому энергия квантов света, выделяющегося при люминесценции, будет меньше, чем энергия квантов возбуждающего света. Иначе говоря, длина волны люминесцентного свечения будет всегда больше, чем длина волны возбуждающего света, за исключением небольшого участка спектра, где полосы возбуждения и люминесценции перекрываются. Эта завнсимостг, была установлена еще до квантовой теории и известна как правило Стокса — Ломмеля спектр люминесценции всегда смещен в сторону более длинных волн по сравнению со спектром поглощения (рис. 18.2). [c.355]

    Дальнейшим развитием теории цветности органических соединений явилось представление о сложных хромофорах. Наиболее важным видом сложных хромофорных систем являются конъюгированные системы двойных связей ациклического или циклического строения. По мере удлинения сопряженной цепи спектр поглощения переходит из ультрафиолетовой области (короткие волны) все дальше и дальше в сторону красной части спектра (более длинные волны). Примером окрашенных углеводородов являются каротин—оранжевого цвета, ликопин—оранжево-красного цвета (см. стр. 568), дифенилгексадекаоктаен GgH,—( H= H)g--GeH5—медно-красного цвета. [c.513]

    В гл. 7 было показано, что при решении уравнения Шрёдингера для молекул, обладающих симметрией, весьма удобны методы теории групп. В некоторых случаях оказывается полезным установить связь между решениями для молекулы с низкой симметрией и решениями для молекулы, обладающей высокой симметрией. Например, и пиридин СбНбМ, и толуол С6Н5СН3 обладают низкой симметрией, однако их можно связать с бензолом, обладающим высокой симметрией рассматривая в первом случае в качестве возмущения замену группы СН атомом К, а во втором — замену Н на группу СН3. Такой подход выявляет тесную связь некоторых физических и химических свойств этих трех молекул, например их ультрафиолетовых спектров поглощения. [c.238]

    Электронные B. . многоатомных молекул классифицируют, основываясь на св-вах симметрии их электронных волновых ф-ций или характере молекулярных орбиталей, занятых холостыми электронами, поскольку понятие квантовых чисел электронов для таких молекул теряет простой смысл. Св-ва симметрии электронных волновых ф-ций молекул обозначают в соответствии с теорией групп симметрии. Так, для молекул Hj O, HjO, относящихся к группе симметрии v, существует 4 возможных типа симметрии волновой ф-ции (А , А , и Bj) в зависимости от того, сохраняется или меняется ее знак при операциях симметрии, свойственных данной группе. Помимо обозначения типа симметрии, индексом слева вверху указывают мультиплетность состояния. Буквы g к и ъ правом ниж. индексе показывают, сохраняется или меняется знак волновой ф-ции при операции инверсии. Необходимо отметить, что такая классификация в неявном виде предполагает сохранение в В. с. молекулы геометрии ее основного состояния. Это справедливо в общем виде лишь при рассмотрении спектров поглощения, когда выполняется принцип Франка-Кондона. На самом же деле у мн. молекул равновесная конфигурация ядер в В. с. может сильно отличаться от конфигурации в основном состоянии (примеры см. ниже). [c.408]

    На основе К. х. разработана теория электронных спектров поглощения и люминесценции молекул, фотоэлектронных и рентгеноэлектронных спектров. Квантовая теория электрич и магн. св-в молекул способствовала внедрению в химию физ. методов исследования, в частности ЭПР, ЯМР и ЯКР, и значительно облегчила интерпретацию эксперим. результатов. Получено большое число расчетных данных по вероятностям электронных переходов, временам жизни возбужденных состояний и спектроскопич. постоянньпи молекул. [c.367]

    О молекулах как о некоторых пространственных геометрических структурах убеждают нас не только тщательно разработанная теория, но и прямые эксперименты по днфракщш рентгеновских лучей на молекулярных кристаллах Сам факт получения достаточно четкой дифракционной картины возможен только тогда, когда имеется некоторое подобие устойчивой во времени дифракционной рещетки Спектры поглощений в инфракрасной области могут появиться только при наличии колебаний атомов около положения равновесия итд Используемые при рещении задач априорные сведения об упругости химических связей черпаются не только из спектральных, но и чисто химических экспериментов Например, давно уже были введены в науку понятия об одинарной, двойной и тройной связях между атомами углерода в углеводородах и было выяснено, что они обладают разной прочностью итд [c.98]

    Началу широкого применения уравнений макроскопической теории способствовали работы Крупна [33], Парседжиан и Нинхзма [34, 35], предложивших ряд упрощенных методов расчета функций е (г ). В этих работах было показано, что для получения вполне надежных результатов можно ограничиться учетом нескольких, основных полос в спектрах поглощения. В первом приближении достаточно учесть дипольную релаксацию, отвечающую области частот а>а 10 рад/с, резонансное поглощение в инфракрасной (о1[, 10 ч- 10 рад/с) и ближней ультрафиолетовой ((Ое — [c.83]

    Многие химики-аналитики считают, что из числа всех спектров поглощения наиболее полезными являются инфракрасные спектры. Это связано с тем, что с помощью обычно используемых спектрометров для многих веществ нельзя наблюдать характеристического поглощения в ультрафиолетовой области спектра, тогда как в инфракрасной области все вещества дают характеристическое поглощение. Подробное рассмотрение теории и интерпретации инфракрасных спектров и спектров комбинационного рассеяния дано в монографии Герцберга [864]. Можно рекомендовать также КНИГУ Рэндала, Фаулера, Фьюзона и Дэнгла [1521], пользование которой не требует математической подготовки. Различные вопросы, связанные с применением инфракрасных спектров в качественном и количественном анализах, описаны в работах Бернса, Гоура и др. [173, 174]. [c.47]


Смотреть страницы где упоминается термин Спектры поглощения теория: [c.145]    [c.489]    [c.145]    [c.221]    [c.257]    [c.246]    [c.132]    [c.269]    [c.366]    [c.443]    [c.23]   
Молекулярная биофизика (1975) -- [ c.326 ]




ПОИСК





Смотрите так же термины и статьи:

спектры теория



© 2025 chem21.info Реклама на сайте