Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь интерметаллическая

    В первой части автор обсуждает электронное строение атома, приводит распределение электронов по квантовым ячейкам и дает наглядные иллюстрации вида облаков s, р, d-электронов. Во второй части обсуждаются ионная связь, гомеополярная связь в Н , понятие о валентном состоянии, направленность валентностей, молекулярные ионы, возбуждение валентности, гибридизация атомных орбит, кратные связи, нелокализованные тт-связи в бензоле, металлическая связь, интерметаллические соединения, металлическая проводимость.  [c.6]


    На рис. 63 четыре типа связей представлены вершинами тетраэдра, причем этим типам соответствуют наши четыре примера тогда ребра тетраэдра символизируют переходы между этими типами связей в твердых телах. Например, в случае висмута накладываются атомные и металлические связи — интерметаллическое соединение [c.177]

    Прибавление электронов сверх оптимально допустимого приводит к энергетической неустойчивости данного типа кристаллической структуры металл — растворитель и к возникновению структуры нового типа. Это уже свидетельствует о превращении твердого раствора в интерметаллическое соединение или при полном завершении валентной зоны — в соединение с ковалентной или ионной связью. [c.253]

    Разнообразие типов химической связи и кристаллических структур обусловливает у интерметаллических соединений широкий спектр физико-химических, электрических, магнитных, механических и других свойств. Так, их электрические свойства могут иногда изменяться от сверхпроводимости в жидком гелии до полупроводимости при обычных условиях. [c.277]

    Интерметаллические соединения ванадия и его аналогов придают сплавам ценные физико-химические свойства. Так, ванадий резко повышает прочность, вязкость и износоустойчивость стали. Ниобий придает сталям повышенную коррозионную стойкость и жаропрочность. В связи с этим большая часть добываемого ванадия и ниобия используется в металлургии для изготовления инструментальной и конструкционной стали. [c.439]

    Структура и связь в интерметаллических соединениях и фазах [c.361]

    Металлическая связь характерна для металлов, их сплавов и интерметаллических соединений. [c.151]

    Величина изомерного сдвига в сплавах, особенно в твердых растворах на основе чистых металлов, в отличие от химических и интерметаллических соединений, в основном связана с изменением плотности электронов проводимости, причем б для данной фазы незначительно меняется с изменением концентрации с растворенного компонента. На рис. XI.2 представлена зависимость изомерного сдвига от концентрации олова для системы 1п—8п, где [c.201]

    Развитие разнообразных областей химии, физики, радиоэлектроники, атомной энергетики, лазерной техники н других отраслей новой техники, в которых используются вещества высокой чистоты, неразрывно связано с применением высокочувствительных методов анализа металлов, неметаллов и их соединений, сплавов, интерметаллических соединений, люминофоров, мономерных и полимерных органических соединений и т. д. [c.20]


    Исследование металлических систем методами физико-химического анализа показало, что при взаимодействии различных металлов образуются определенные интерметаллические соединения. Известны как двойные, так и тройные интерметаллиды, в которых атомы различных металлов связаны друг с другом металлической связью. Интерметаллиды в большинстве случаев более или менее устойчивы только в твердом состоянии. Их состав не соответствует обычным валентным соотношениям образующих элементов, и во многих случаях колеблется в связи со способностью интерметаллидов образовать твердые растворы с элементарными металлами и с другими интерметаллидами. [c.27]

    Особенно прочна связь у большинства переходных металлов ( -элементы). Наличием металлической связи характеризуются также сплавы металлов и многие металлические (интерметаллические соединения). [c.32]

    Металлическая связь. Металлическая связь — разновидность ненаправленной ковалентной связи. Она существует между атомами с небольшим числом валентных электронов, слабо удерживаемых ядром, и большим числом свободных валентных орбиталей. Металлическая связь осуществляется в кристаллах металлов и их сплавов, а также интерметаллических соединений. [c.49]

    Все карбиды по типу связи между атомами можно разделить на-три группы ионно-ковалентные (солеподобные), интерметаллические (внедрения) и ковалентные. [c.275]

    Соединения малоактивных металлов даже с активными окислительными элементами не обладают признаками типичных солей, а напоминают кислотообразующие соединения с ковалентным типом связи, неспособные подвергаться электролитической диссоциации. Металлы также образуют друг с другом интерметаллические соединения (см, ниже). Между этими тремя группами соединений нет резких границ. Хорошо [c.75]

    Одним из фундаментальных химических законов, сыгравших важную роль в формировании молекулярного учения, является закон постоянства состава, согласно которому каждое химическое соединение независимо от способа получения имеет вполне определенный и постоянный состав. Однако применение этого закона к любым химическим соединениям независимо от их агрегатного состояния и типа связи, как мы теперь знаем, было неправомерным и надолго затормозило развитие химии твердого тела. Потребовалось свыше ста лет, прежде чем Н. С. Курников, исследуя характер взаимодействия в мета./1-лических системах, доказал возможность образования интерметаллических соединений, стабильных в широкой области концентраций. В дальнейшем было показано, что все немолекулярные кристаллы химических соединений имеют переменный состав. [c.299]

    Какова же причина принципиально отличного поведения в растворах различных интерметаллических соединений Данные физико-хими ческих исследований интерметаллических соединений показывакуг, что интерметаллические соединения могут иметь чисто металлические связи в решетке или наложенные связи в последнем случае одновременно с металлическими связями в решетке имеются и другие типы связей. Вероятно, природа химических связей внутри решетки и определяет коррозионную стойкость интерметаллических соединений. В случае когда в решетке интерметаллического соединения имеются только металлические связи, интерметаллическое соединение является в коррозионном отношении однородным электродом. [c.117]

    Межкристаллитная коррозия дюралюминия (около 4—5% Си 0,5—1,75% Mg, по 0,5% 81, Мп и Ре, ост. А1), согласно работам А. И. Голубева, связана с разрушением образующегося при распаде твердого раствора (в виде более или менее непрерывной цепочки на границах зерен) интерметаллического соединения СцА12 в тех случаях, когда процесс коррозии сопровождается выделением водорода. В этих случаях на включениях СиА12 и зернах твердого раствора не образуется кроющая пленка продуктов коррозии, которая обычно (при кислородной деполяризации) препятствует коррозии включений СиА1з, а следовательно, и развитию межкристаллитной коррозии. Первоначальными очагами выделения водорода и возникновения межкристаллитной коррозии являются, по данным С. Е. Павлова и С. М. Амбарцумяна, межкристаллитные микропоры на поверхности сплава. Поэтому в качестве одного из наиболее эффективных путей борьбы с межкристаллитной коррозией алюминиевых сплавов, содержащих медь, рекомендуется уплотнение структуры металла. [c.420]

    Отравление ионами металлов свойственно платиновым, палладиевым и другим катализаторам из металлов VIII группы и благородных металлов других групп. Было обнаружено, что каталитическая активность платиновых и палладиевых катализаторов гидрирования понижается в присутствии ионов ртути, свинца, висмута, олова, кадмия, меди, железа и других. Сравнение токсичности ионов различных металлов по отношению к платиновым катализаторам гидрирования приводит к заключению, что токсичность свойственна, по-видимому, тем металлам, у которых все пять орбит d-оболочки, непосредственно следующих за s- и р-валептными орбитами, заняты электронными парами или по крайней мере одиночными -электронами. По мнению Мэкстеда, отсюда вытекает, что отравление платины и подобных ей катализаторов ионами металлов включает, вероятие, образование адсорбционных комплексов, которые можно рассматривать как интерметаллические соединения с участием d-электронов в образовании интерметаллических связей. [c.54]


    Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]

    Как известно, изоморфные вещества образуют друг с другом твердые растворы — гомогенные твердые вещества сложного состава, в структуре которых атомы распределены статистически. В твердых растворах ионных соединений, металлов, полимеров атомы соединены межатомными связями. Поэтому подобные вещества являются твердыми атомными соединениями. Каждому непрерывному твердому раствору соответствует ряд однотипных твердых химических соединений, в том числе соединений, обладающих равноценными статистическими структурами, и в ряде случаев интерметаллических соединений. Например, медь и золото образуют непрерывный ряд твердых растворов, но при концентрациях золота от 20 до 70 ат. % в сплавах, полученных отжигом (т. е. выдерживанием сплава при высокой температуре), проявляются интерметаллические соединения СизАи и СиАи, имеющие строго закономерную структуру. Следовательно, твердые растворы не всегда имеют неупорядоченное строение. Эта неупорядоченность — во многих случаях результат закрепления атомов при [c.44]

    Некоторые интерметаллические соединения, связь в которых заметно ковалентна, обладают полупроводниковыми свойствами. Наиболее важны соединения типа А В (например, GaAs, InSb), которые изоэлектронны с кремнием или германием. Эти соединения кристаллизуются, как правило, в структурном типе цинковой обманки. [c.363]

    Химия твердого тела (или твердого состояния) — относительно молодая область науки [18—21]. По сути своей, по предмету исследования — это неорганическая химия, запоздало расставшаяся с представлениями о безграничном господстве стехиометрии. Но именно в связи с запоздалым отходом от абсолютизации закона постоянства состава выделение из неорганической химии ее дочерних областей — химии твердых растворов (или химии интерметаллических соединений), кристаллохимии, химии твердого тела, а до известной степени и порошковой металлургии — привело к дисгармонии в проблематике и к нарушению координации научных иссле-AOBaiuift в этих областях. В ряде случаев одни и те же проблемы оказались в ведении разных областей, каждая из которых решает их по-своему, в изоляции от других областей, ие прибегая к научным дискуссиям, что было бы естественно. [c.239]

    Металлическая связь осуществляется электронами, свободно переходящими от одного атома к другому в пределах металлического кристалла. Этот тип связи преобладает по сравнению с другими, когда в атомах имеется много свободных незанятых энергетических уровней, обеспечивающих свободное перемещение электронов, благодаря чему весь кристалл превращается в единую систему взаимосвязанных атомов. Обычно у атомов металлических элементов мало электронов на внешних энергетических уровнях, а число свободных уровней велико. Металлическая связь встречается не только у металлов, но и у некоторых карбидов (РедС, УС), силидов (СгЗ , 11512), в интерметаллических соединениях (MgZп2, NiSb, MgNi2Sn) и др. [c.67]

    Валентность. Окислительное число. Валентность — это мера способности атома элемента к образованию химических связей с атомами других или того же самого элемента. Так, хлор в НС1 одновалентен, кислород в HjO двухвалентен и т. д. В пособиях по химии не всегда однозначно указываются валентные числа атомов элементов из-за трудности всей проблемы химической связи в целом. В настоящем посрбии авторы пользуются как понятием валентность , так и окислительное число . Под валентностью элемента подразумевается число одиночных электронов, которые атом выделил для образования химических связей. Азот в NH, трехвалентен, но в HNO3 не пятивалентен, так как атом азота не имеет пяти одиночных электронов (см. стр. 213). В молекуле Nj азот трехвалентен (а не нульвалентен), так как каждый из атомов азота выделил по три электрона для создания трех связующих электронных пар. Углерод во всех < лучаях четырехвалентен, кислород двухвалентен. Для интерметаллических соединений обычное понятие валентности неприменимо и этот вопрос в практикуме не рассматривается. Валентность указывается без знака плюс или минус. [c.68]

    Химические соединения металлов друг с другом иазывакуг также интерметаллическими соединениями. Они имекгг обычно сложную кристаллическую структуру, отличную от структур исходных металлов. Свойства этих соединений также существенно отличаются от свойств исходных металлов. Так, кристаллы интерметаллических соединений почти всегда хрупки, характеризуются низкими значениями электрической проводимости и теплопроводности. Все это подтверждает смешанные межатомные связи в кристаллах (металлическую, ковалентную и ионную). Многие интерметаллические соединения отличакггся высокими теплотами образования и химической стойкостью. [c.254]

    Кристаллоструктурные задачи. Стереохимические исследования важны главным образом для сложных по составу соединений, чаще всего включающих фрагменты (лиганды, радикалы, молекулы) органической природы. Но существуют и такие классы соединений, как интерметаллические и ионные кристаллы, где дальний порядок, т. е. не стереохимический, а упаковочный (кристаллоструктурный) аспект строения, более существен, чем стереохимический. Это связано с тем, что именно строение кристалла в целом, а не конфигурации отдельных структурных кирпичей определяют анизотропию кристаллического вещества и такие физические свойства, как твердость, упругость, а также сегнетоэлектрические, пироэлектрические и другие характеристики [c.178]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]


Смотреть страницы где упоминается термин Связь интерметаллическая: [c.146]    [c.409]    [c.233]    [c.36]    [c.355]    [c.143]    [c.363]    [c.341]    [c.109]    [c.201]    [c.277]    [c.254]    [c.339]    [c.185]    [c.57]    [c.75]    [c.75]    [c.78]    [c.230]   
Справочник полимеров Издание 3 (1966) -- [ c.232 ]




ПОИСК







© 2025 chem21.info Реклама на сайте