Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орошение колонны схемы

    Качество работы установок АТ во многом зависит от схем отдельных технологических узлов, в первую очередь от различных по конструктивному оформлению схем узлов перегонки нефти. Ректификационные колонны атмосферной части при одинаковой мощности имеют разные размеры, разное число тарелок. Режим работы колонн, особенно в случае применения клапанных тарелок, изучен недостаточно. Нужно более тщательно изучить системы орошения колонн, эффективность и количество циркуляционных промежуточных орошений, поскольку наблюдается несоответствие проектного количества циркулирующей флегмы и фактического. Особенно важно установить факторы, влияющие на число тарелок, предназначенных для отдельных фракций, поскольку на установках АВТ это число меняется в широких пределах. Так, по схеме с однократным испарением на каждый отбираемый дистиллят приходится по 7—8 тарелок, а при наличии двух ректификационных колонн—по 11—17. В то же время четкость погоноразделения в основных колоннах по обеим схемам практически одинакова. Ректификация и способы регулирования температурных режимов в колоннах также осуществляются по-разному. В колоннах может быть или одно острое орошение или еще дополнительно промежуточное циркуляционное орошение. [c.232]


    Выделение ароматических углеводородов производится по типичной схеме непрерывного процесса экстрактивной ректификации (см. рис. 4,а, стр. 35). В среднюю часть экстрактивно-ректификационной колонны подается углеводородный концентрат, а на некотором расстоянии от верха колонны — разделяющий агент. В качестве дистиллата отбираются неароматические углеводороды, а из куба — раствор ароматического углеводорода в разделяющем агенте, подаваемый в середину отгонной колонны. В последней в качестве дистиллата отбирается ароматический углеводород, а из куба — разделяющий агент, возвращаемый на орошение колонны для экстрактивной ректификации. [c.273]

    Все колонны схемы I можно совместить в общем корпусе, причем отгонные части колонн монтируются отдельно. Тогда в верхнюю часть колонны должно подаваться орошение в количестве, достаточ- [c.223]

    В схемах с тепловым насосом на верхнем продукте в качестве хладоагента используют пары орошения и дистиллята (см. рис. П-6, б), которые после подогрева в теплообменнике 2 и сжатия в компрессоре конденсируются в подогревателе колонны 4. Затем жидкость охлаждается в теплообменнике 2, дросселируется в дросселе, и после сепарации образовавшихся фаз в сепараторе часть охлажденной жидкости подается на орошение колонны, а остальное количество отбирается в виде дистиллята. Избыточное тепло компрессора снимается также в холодильнике 3. [c.111]

    Технологическая схема получения неопентилгликоля изображена на рис. 10.8. Технический формалин (37%-ный) подается в колонну I. С верха колонны при температуре 64—66 С отводится метанол в виде товарного продукта. Кубовый остаток из колонны 1 при 100 С подается на верхнюю тарелку колонны 2, предназначенной для извлечения остаточного метанола. С верха колонны 2 при температуре 96—98 °С отводится продукт, содержащий 10—11% метанола, который возвращается в куб колонны 1. Кубовый продукт колонны 2, содержащий не более 0,1% метанола, охлаждается до 60—65 °С и подается в середину вакуумной колонны 3 (верх колонны — 50—100, низ — 400 мм рт. ст.), которая предназначена для концентрирования формальдегида. С верха колонны 3 при температуре 42—45 °С отводится 9—10%-ный водный раствор формальдегида, часть которого подается на орошение колонны 3, а остальной — в колонну 4 для извлечения остаточного формальдегида. Кубовый продукт колонны 3 представляет собой 70%-ный формальдегид, который после смешения с изобутило-вым спиртом подается на стадию конденсации в реактор 5. В колонне 4 раствор формальдегида в воде укрепляется от 9—10% до 37—38% (масс.). Пары формальдегида и воды конденсируются, и жидкий продукт направляется на питание колонны 2. Кубовый остаток колонны 4 отводится на очистку. [c.340]


    При снятии заглушки на линии приема насоса 8 НГД производительностью 121 мVч, предназначенного для подачи бутановой фракции из сборника на орошение колонн, произошла утечка газа из трубопровода с последующим его воспламенением, в результате которого группа рабочих получила ожоги. Причина аварии — дефекты схемы обвязки насоса, не позволяющей обеспечить полное освобождение трубопроводов от взрывоопасного продукта. Авария произошла при следующих обстоятельствах. [c.36]

    Анализ работы атмосферных колонн показал, что оптимальной будет схема, при которой острым (верхним) орошением колонны снимается около 40 % тепла и двумя промежуточными — около 30 % каждым. Режим работы колонн установки АТ-6 (числитель— верх, знаменатель — низ) и их характеристики приведены ниже  [c.14]

    Установки водяного орошения (принципиальная схема установки изображена на рис. 30) предназначены для охлаждения колонн высотой более 20 м и обеспечения пожарной безопасности их строительных конструкций. [c.56]

    Тощий абсорбент из нижней части десорбера через теплообменники Я 5 и холодильник 7 отводят в емкость 14, из которой затем подают насосом иа орошение колонн 3 и 6 при этом образуется замкнутый цикл дви-жания абсорбента. В емкость 14 предусматривают подачу свежего абсорбента со склада. Для опорожнения труб печи от абсорбента во время плановых и аварий- 1Ь х остановок схемой предусматривается его слив в аварийную емкость 16, откуда он может быть при помощи газа вытеснен в емкость 14. [c.144]

    При появлении уровня на 15 тарелке колонны К-Ю включают верхнее циркуляционное орошение по схеме 15-я тарелка колонны К-Ю— Н-24 (Н-25а)— Т-25— Т-25а— Т-28 и с температурой 50 °С возвращают на [c.77]

    Балансовый избыток фракции до 350 °С насосом Н-24 подают в колонну К-2 или в линию дизельного топлива с установки. При необходимости насосом Н-24 подают горячее орошение на 14-ю тарелку колонны К-Ю. При появлении уровня на 9-й тарелке колонны К-Ю включают среднее циркуляционное орошение по схеме 9-я тарелка колонны К-Ю—>Н-25 (Н-25а)—у-Т-16—уТ-30—> —>-10-я тарелка колонны К-Ю. [c.77]

    Для промышленных установок экстрактивной ректификации типична схема, изображенная на рис. 5.5. Исходная смесь подается на верхнюю тарелку исчерпывающей части, а разделяющий агент поступает на верхнюю тарелку укрепляющей части колонны К-1 и стекает вместе с флегмой. Разделяющий агент, содержащийся в парах легколетучего компонента, улавливается флегмой на тарелках регенерационной секции колонны К-1. Труднолетучий компонент и разделяющий агент выводятся с низа колонны К-1 и разделяются в колонне К-2. Чистый тяжелый компонент выделяется в качестве дистиллята а разделяющий агент — в виде кубового продукта. Последний возвращается на орошение колонны К-1. [c.281]

    Водный раствор лактама с верха аппарата 12 в блоке 13 под-В( ргают химической очистке вначале ионообменными смолами, а затем 1идрир0ванием на гетерогенном катализаторе. Очищеннын раствор лактама упаривают (в вакууме) в каскаде выпарных колонн [на схеме изображены две (14 и 15) с ситчатыми тарелками], используя -соковый пар предыдущей колонны для обогрева кипятильников последующих колонн. Часть отгоняемой воды направляют на орошение колонн, а остальное выводят из системы. После выпаривания получается 95—97%-ный лактам. Заключительная стадия очистки— дистилляция, которую во избежание термическо-гс разложения лактама проводят в вакуумных роторно-пленочных испарителях. Вначале в испарителе 17 отгоняют воду, захватываю-шую с собой лактам. Эту легкую фракцию возвращают на стадию экстракции в аппарат И или на нейтрализацию в аппарат 8. Лактам из испарителя 17 поступает в испаритель 19, где чистый капролактам отгоняют от тяжелого остатка. Последний еще содержит значительное количество капролактама, который отгоняют в дополнительном испарителе и возвращают в блок 13 химической очистки или в экстрактор 11 (на схеме не изображено). [c.568]

    По Другой схеме полной конденсации (рис. 19-17,6) дефлегматор / располагают ниже верха колонны. Конденсат отводится в сборник 4. Флегма подается на орошение колонны насосом 5. Дистиллят отбирается из сборника 4 или из напорной линии насоса. [c.687]

    В промышленности широко распространена схема работы сложной колонны с промежуточным циркуляционным орошением. Такая схема с организацией промежуточного циркуляционного орошения иа верху одной пз простых колонн (колонны III) показана на рис 6..  [c.187]

    На рис.7.9 представлена технологическая схема установки каталитического крекинга с кипящим слоем катализатора 1—А/1—М. Крекируемое сырье через теплообменники 1 подается в печь 2. Нагретое сырье смешивается с рециркулятом (частью тяжелой фракции) и по катализаторопроводу поступает в реактор крекинга 3. В нижнюю отпарную зону реактора вводится водяной пар для отдувки катализатора. Пары продуктов реакции и водяной пар при температуре 450°С из верхней части реактора 3 поступают в нижнюю часть ректификационной колонны 4. Пары бензина и водяной пар отбираются с верхней части колонны, проходят холодильник-конденсатор 5 и поступают в сепаратор 6, в котором разделяются на водяной слой, бензиновый слой и газ. Газ компрессируется и подается на газо-фракционирование, а бензин поступает на ректификацию. Часть бензина отбирается на орошение колонны. [c.138]

    В период эксплуатации установок внесены некоторые изменения в проектную технологическую схему исключена схема циркуляции экстрактного раствора через холодильник в низ экстракционной колонны, схема орошения испарительных и отпарных колонн блока регенерации фенолом, а также изменен способ конденсации паров отпарных колонн рафината и экстракта. Принципиальная технологическая схема установки приведена на рис. 1. [c.3]


Рис. 17. Схема комбинированного орошения колонн блока регенерации рафинатного /а/ и экстрактного /б/ растворов /линии орошения показаны пунктиром/ Рис. 17. <a href="/info/1697614">Схема комбинированного</a> <a href="/info/49477">орошения колонн</a> блока регенерации рафинатного /а/ и экстрактного /б/ растворов /линии орошения показаны пунктиром/
    С целью уменьшения выноса легкокипящих компонентов с парами внедрена схема комбинированного орошения колонн блока регенерации /рис. 17/. [c.64]

    В работе [35] на примере разработки оптимальной схемы деметанизацни газов пиро пиза описано применение этого метода. В табл. П.З приведены исходные данные по процессу состав сырья, получаемых продуктов, температуры и давления. На рис. П-25 показаны принципиальные технологические схемы процесса, иллюстрирующие последовательность синтеза в качестве первоначального варианта (схема а) была принята обычная схема полной колонны с парциальным конденсатором при температуре хладоагента (этилена) минус 100 °С. Далее для конденсации и охлаждения верхнего продукта наряду с хладоагентом был использован дроссельэффект сухого газа (схема б). Затем исходное сырье охлаждали до температуры минус 62 С (схема в) н подвергали последовательной сепарации с подачей в колонну нескольких сырьевых потоков (схемы гид). Затем организовали промежуточное циркуляционное орошение в верхней частн колонны (схема е) и, наконец, — рецикл пропана с подачей его в промежуточный сырьевой конденсатор (схема ж). Соответствующие изменения температурного режима и стоимостные показатели процесса приведены в табл. П.4. Как видно, наибольшие затраты в простейшей схеме падают на потери этилена с сухим газом и на хладоагент, а по мере усовершенствования схемы эти статьи затрат существенно уменьшаются и становятся соизмеримыми с остальными элементами затрат для оптимальной схемы ж. [c.129]

    ЭЛОУ комбинируются с установкой АТ или АВТ, что позволяет достичь значительной экономии энергоресурсов, необходимых для нагрева нефти в процессе обессоливания, за счет использования тепла отходящих потоков нефтепродуктов с АТ или АВТ и тепла циркуляционного орошения колонн. На рис. 3.5. представлена принципиальная схема блока ЭЛОУ применительно к установке АВТ-6 Киришского НПЗ. [c.43]

Фиг. 40. Схемы орошения колонны. Фиг. 40. <a href="/info/817862">Схемы орошения</a> колонны.
    Орошение и регенерация тепла на вакуумных колоннах производятся по следующим схемам а) ввод промежуточного циркуляционного орошения в нескольких точках и регенерация его тепла б) острое орошение верха колонны и регенерация тепла боковых погонов в) орошение через парциальный конденсатор и регенерация тепла боковых погонов. Схема а дает наилучшие результаты требует наименьших поверхностей теплообмена,, разгружает верх колонны. Орошение колонны в нескольких, например, в трех, сечениях (по числу боковых погонов) увеличивает гибкость регулирования качества дестиллатов. [c.110]

    Сравнение систем орошения колонны. Если пары, поднимающиеся с самой верхней тарелки колонны, полностью ожижаются и охлаждаются и часть конденсата возвращается на верх колонны в качестве орошения, то такая система съел1а тепла называется холодным (острым) орошением. При этом парциальный конденсатор выпадает из схемы колонного аппарата и его обогатительный эффект должен быть возмещен дополнительной теоретической тарелкой, позволяющей доводить состав паров Gj до состава Хц ректификата (рис. П1.31). Поэтому при холодном (остром) орошении флегма ga, стекающая с верхней тарелки колонны, играет ту же роль, что и жидкий поток, стекающий из парциального конденсатора в случае, когда орошение осуществляется с его помощью. [c.175]

    Согласно схеме I в первой колонне отбираются три компонента (а, б и е), а наиболее высококипящий компонент выделяется в виде остатка. Орошением колонны служит смесь компонентов а, б и б. Следующий высококипящий компонент отбирается в виде остатка второй колонны, а два остальных отгоняются в виде ректификата и служат орошением второй колонны. Наконец, в третьей колонне разделяются компоненты а и б, ил1еющие наиболее низкие температуры кипения. [c.222]

Рис. VI.6. Расчетная схема для случая орошения колонны смесью из слоя о,1 и части конденсата наров С. Рис. VI.6. <a href="/info/1538507">Расчетная схема</a> для случая <a href="/info/49477">орошения колонны</a> смесью из слоя о,1 и части конденсата наров С.
    Регулирование давления. Работа ректификационной колонны во МНОГОМ зависит от качества регулирования давления из-за значительного влияния давления на температуры потоков и долю отгона сырья. Особенно важно регулирование давления при разде-Л81н ии легких углеводородов, и, изом1е(ров. В зависимости от состава и свойств разделяемой смеси и аппаратурного оформления процесса может быть принят один из следующих вариантов регулирования давления в колонне (рис. У1-14). По схеме а давление регулируется изменением проходного сечения клапана, установленного нeпoqpeя тввннo яа паровом трубопроводе из колонны. Схема применяется, когда температура верха невелика и требуется минимальное время запаздывания. По этой схеме уровень жидкости в емкости орошения регулируется изменением расхода охлаждающей воды, в конденсатор-холодильник. [c.329]

    Снижению интенсивнйсти коррозии способствует орошение колонны очищенным от сероводорода бензхшом. Для этого в схеме установки должна быть предусмотрена колонна отдува сероводорода из бензина очищенным углеводородным газом. Кроме того, в шлемовую трубу колонны и линию подачи орошения в стабилизационную колонну целесообразно подавать ингибитор коррозии. [c.150]

    Способ ректификации сложных смесей, предусматривающий применение нескольких промежуточных циркуляционных орошений, и схема работы сложной колонны, разработанные в Гипроаз-нефти, позволяют максимально использовать избыточное тепло колонны и уменьшить объем паров, проходящих через ее сечение. Сущность этого способа заключается в следующем. Острое орошение промежуточных секций или промежуточных колонн сложной [c.41]

    Рафинатный раствор, содержащий 0,2—0,3 % (масс.) пропана, поступает за счет разности давлений с низа колонны 14 в селектовую рафинатную колонну 2. Давление в этой колонне около 0,07 МПа. Уходящая с верха колонны 2 смесь паров селекто и пропана направляется в колонну 23. Холодным орошением колонны 2 является селекто. Тепло, необходимое для удаления растворителя, вносится рафинатом, циркулирующим по схеме низ колонны 2 -> насос 7 -> печь 8 колонна 2. В результате температура низа колонны 2 поддерживается на уровне 330—340 °С. [c.77]

    Избыток бензина из емкости Е-1 перетекает в буферную емкость Е-12, сюда же из емкости Е-3 насосами Н-4 и Н-4а откачивается избыток бензина из основной атмосферной колонны. Из емкости Е-12 некондиционная фракция н. к.— 180 °С забирается насосами Н-16 и Н-11а и прокачивается через теплообменник Т-11 в стабилизационную колонну К-8, а из нее — на защелачивание в емкость Е-7 и выводится в резервуар для некондиционного продукта. При достижении температуры нефти в электродегидраторах 120—140 °С и убедившись в отсутствии газа в электродегидраторах, включают напряжение на один электрод во всех электродегидраторах. По достижении нормального напряжения на первых электродах включают напряжение на второй электрод. Налаживают подачу реагентов и воды в электродегидраторы. Последовательно пускают насосы подачи первого, затем второго циркуляционных орошений колонны К-2 — вначале по обводным линиям для определения проходимости, а затем постепенно включая соответствующие теплообменники, по полным схемам циркуляционных орошений. Если циркуляция по каким-либо причинам задерживается (устранение пропусков, неготовность или выход из строя насосов), необходимо обратить внимание на подачу реагентов и воды, в электродегидраторы, так как излишняя подача их приводит к образованию стойких эмульсий в злектродегйдратарах,= " [c.72]

    Эфиры, выходящие с низа эфирнзатора 7, дросселируют и подвергают вакуум-перегонке при остаточном давлении 133 гПа. Вначале в испарителе 8 отгоняют смесь эфиров от менее летучих смолистых примесей. Легкий погон из ректификационной. колонны 10 представляет собой метил-л-толуилат. Он конденсируется в конденсаторе-дефлегматоре 11. Часть его идет на орощение колонны, а остальное количество стекает в сборник 13, откуда направляется на окисление. Эфиры дикарбоновых кислот из куба колонны 10 поступает на вакуум-ректификацию в насадочную колонну 12, где более летучий диметилтерефталат отгоняется от днметиловых эфиров изомерных дикарбоновых кислот ( изофталаты ). В конденсаторе-дефлегматоре 14 эфир конденсируется часть его возвращается на орошение колонны, а остальной продукт стекает в сборник 15. Кубовый остаток из колонны 12 еще содержит значительное количество диметилтерефталата. Его направляют на кристаллизацию из метанольных растворов, на схеме не показанную. Изофталаты лучше растворяются в метаноле, и диметилтерефталат отделяют от них в виде кристаллов, возвращая его на рек-тифика дию. [c.401]

    Регулирование отбора ректификата и, соответственно, температуры верха колонны осуществлено с помощью иглы 9. Головка снабжена кадиллярным расходомером орошения (на схеме не показан), что также важно для нормального ведения процесса. Расход сырья регулируется игольчатым вентилем 4, а стабильность расхода сьфья поддерживается по показанию ротаметра 3. [c.119]

    Поскольку РУСТ-2 предназначен в основном для нефтей, в которых много растворенного газа и всегда в небольших количествах присутствует растворенная вода, стеклянная головка колонны должна обеспечить нормальную работу копонны при напичии этих примесей. Нижняя часть головки, где собирается конденсат, имеет два патрубка один, в самом низу, 23 для отбора воды, а другой, несколько повыше, 8, для регулирования отбора ректификата в приемник. Избыток флегмы через капиллярный расходомер орошения (на схеме не показан) или через скос парового патрубка возвращается в колонну как орошение. Несконденсировавшиеся в головке легкие углеводороды попадают в ловушку 29, температура в которой несколько ниже, чем в головке, а остальные направляются в газосборник 30. Спуск воды из газосборника по мере поступления газа регулируют таким образом, чтобы показание манометра было стабильным (50-100 Па). [c.131]

    В этом случае из колонны III на ректификацию поступают пары, вес которых равехг весу ректификата этой колонны без сопровождающих паров орошения. Для схемы, изображенной на рис. 6. 7, iie этих паров равен весу фракции легкого и тял елого бензинов. [c.188]

    Пусть, согласно схеме на рис. ХП-16, в колонну поступает Р кмоль исходной смеси, состав которой Хр мол. долей НК. Сверху из колонны удаляется С кмоль паров, образующих после конденсации флегму и дистиллят. Количество получаемого дистиллята Р кмоль, его состав Хр мол. долей НК- На орошение колонны возвращается флегма в количестве Ф клголь, причем ее состав равен составу дистиллята (Хф = Хр мол. долей). [c.487]

    Необходимо отметить, что все проектные данные были достигнуты. В колонне были смонтированы три слоя насадки ВАКУ-ПАК. Первый слой — высотой 3,3 м. Насадка укладывалась на металлическую выгородку по квадрату, со стороной квадрата 3,3 м и высотой слоя 2,69 м, второй слой укладывался внутри цилиндрической выгородки диаметром 7,4 м и высотой слоя 2,016 м. Третий слой укладывался внутри цилиндрической выгородки диаметром 7 м и высотой 2 м. Под каждым слоем имеется глухая по жидкой части тарелка желобчатого типа, откуда насосами забираются циркуляционные орошения колонны, а избыток с тарелки через переливные трубы сливается на нижележащие секции насадки. Ввод в колонну мазута из вакуумных печей П-3/1 и П-3/2 производится через 2 штуцера диаметром 1000 мм каждый. Под нижнюю тарелку отгонной части дается перегретый водяной пар давлением 0,7-1,0 МПа. Водяные пары и газы с верха колонны К-10 отсасываются двумя рядами параллельно работающих пароэжекторов и конденсируются в промежуточных поверхностных конденсаторах К-1, К-2, К-3. Сконденсированная часть водяных паров и газов из поверхностных конденсаторов уходит в барометрическую емкость Е-3. Несконденсированная часть газов после 3-ей ступени эжекции отправляется натермический дожигв печи П-3/1, П-3/2. Перед входом в печи эти газы попадают в глушитель выхлопа Е-27, где происходит дополнительная сепарация алаги. В вакуумную колонну предусмотрена подача нейтрализатора и ингибитора коррозии. Схема работы вакуумсоздающей системы принципиально не отличается от общепринятых. [c.109]

    Установки с однократным испарением. Типовая схема установки показана на фиг. 44. Нефть одним из двух паровых насосов Н1 прокачивается последовательно через пародестиллатные теплообменники Т1. Предварительно подогретая нефть проходит через водогрязеотделители 01, работающие параллельно. Затем нефть нагревается в дестиллатных теплообменниках Т2, мазутных ТЗ и, наконец, поступает в печь П1 при 170—175°. Из печи нефть при температуре 330° или несколько выше поступает в ректификационную колонну К1, снабженную отпарными секциями. В колонне отделяются бензин, который отводится с верха колонны, и боковые погоны, например лигроин, керосин, газойль, соляровый дестиллат (или парафиновый). Пары бензина и водяной пар копденсируются и охлаждаются в теплообменниках Т1 и в водяных холодильниках Т4, Бензин отделяется от воды в водоотделителе 02 и из приемного бачка А1 подается в резервуар, другая же его часть насосом Н2 направляется для орошения колонны. Боковые дестиллаты проходят в водяные холодильники Т5, Тб, Т7. Мазут с низа колонны насосом НЗ прокачивается через теплообменники ТЗ и охлаждае тся в холодиль- [c.112]

    Но даже и для одного и того же типа установки существуют разнообразнейшие варианты в отношении других, более второстепенных признаков — системы орошения колонн, чиапо, устройство и взаимосвязь теплообменников, отпарных колонн и др. Более того решительно все установки, сооруженные по определенной схеме, подвергаются время от времени переделкам и усовершенствованиям в связи с изменяющимися условиями производства. [c.119]


Смотреть страницы где упоминается термин Орошение колонны схемы: [c.36]    [c.212]    [c.328]    [c.186]    [c.78]    [c.324]    [c.163]    [c.202]    [c.514]    [c.28]    [c.59]   
Ректификационные и абсорбционные аппараты. Методы расчета и основы конструирования. Изд.3 (1978) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Выбор схемы орошения атмосферной колонны

М а н о в я н, В. В. Лозин, Б. А. Сучков. Расчетный анализ схем орошения нефтяной колонны

Орошение

Орошение схемы

Способы орошения ректификационных колонн на установках АТ и Выбор схемы перегонки



© 2025 chem21.info Реклама на сайте