Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция триплетов

    Замедленная флуоресценция, триплет-триплетная аннигиляция и двухфотонное поглощение [c.140]

    Поскольку такого типа замедленную флуоресценцию впервые наблюдали у эозина, ее называют замедленной флуоресценцией типа эозина или типа Е. Подобная флуоресценция должна существовать у соединений, имеющих большой выход триплетов и небольшую разность энергий триплетного п первого возбужденного синглет-ного состояний. Замедленная флуоресценция типа Р возникает за счет взаимодействия между триплетными молекулами, в результате которого одна из молекул попадает в возбужденное синглетное состояние  [c.54]


    Поскольку триплет — триплетный перенос энергии происходит по обменному механизму, т. е. при столкновении молекул, суммарный спин при этом сохраняется, переход становится разрешенным и не зависящим от степени запрета триплет — синглетного перехода A-v A в акцепторной молекуле. Примером триплет — триплетного переноса энергии в жидком растворе при импульсном возбуждении может служить система нафталин — фенантрен. При увеличении концентрации нафталина уменьшается триплет — триплетное поглощение фенантрена и появляется триплет — триплетное поглощение нафталина. При этом при достаточной концентрации триплетных молекул нафталина вследствие триплет — триплетной аннигиляции наблюдается испускание замедленной флуоресценции [c.168]

    Метод импульсного фотолиза может быть использован для изучения флуоресценции (интенсивности, тушения флуоресценции). При помощи импульсного фотолиза очень удобно исследовать замедленную флуоресценцию. Для изучения флуоресценции в установке импульсного фотолиза в самом простом варианте исключается зондирующий свет. Если для измерения флуоресценции использовать дополнительную отражающую полупрозрачную пластинку, расположенную на пути зондирующего луча, то в одном эксперименте одновременно можно измерять оптическую плотность короткоживущих продуктов, например триплет — триплетного поглощения, и интенсивность флуоресценции. [c.169]

    Константа триплет —триплетной аннигиляции йтт равна сумме констант к и Введем обозначение р для вероятности образования возбужденных синглетных молекул при триплет — триплетной аннигиляции (р = й1/йтт). Теперь напишем выражение для интенсивности замедленной флуоресценции /зф  [c.170]

    Тушение флуоресценции тяжелыми атомами приводит к образованию молекул в триплетном состоянии. На этом основан метод определения квантового выхода триплет — триплетного поглощения Фг. В присутствии соединений с тяжелыми атомами в системе могут протекать следующие процессы  [c.164]

    Триплет — триплетное поглощение и замедленная флуоресценция рибофлавина. Нижнее триплетное состояние рибофлавина расположено близко к возбужденному синх летному состоянию, поэтому за счет термической активации возможно заселение синглетного состояния через триплетное с последующим испусканием замедленной флуоресценции -типа. Для измерения триплет — триплетного поглощения и замедленной флуоресценции готовят полимерную пленку с рибофлавином, например, на основе поливинилового спирта, которую помещают под углом 45° к импульсной лампе. Облучение проводят через фильтр УФС-6 или СЗС-20. Максимум триплет — триплетного поглощения находят при 520 нм, а максимум флуоресценции — при 565 нм. Замедленная флуоресценция регистрируется при перекрывании зондирующего света. На рис. 72 приведены кинетические кривые гибели триплетного состояния рибофлавина (а) и замедленной флуоресценции (б). [c.191]


    Фосфоресценция, как правило, происходит после заселения уровня Г) посредством безызлучательного синглет-триплетного перехода с уровня 5], который в свою очередь возбуждается в результате поглощения света. Состояние 1 обычно имеет меньшую энергию, чем состояние 5ь поэтому долгоживущее излучение (фосфоресценция) является более длинноволновым, чем короткоживущее излучение (флуоресценция). Относительная интенсивность флуоресценции и фосфоресценции зависит от скорости излучения и интеркомбинационной конверсии с 5 абсолютный квантовый выход зависит также от меж- и внутримолекулярных процессов переноса энергии, фосфоресценция конкурирует не только со столкновительным тущением Ти но и с интеркомбинационным переходом на 5о. Разница между общей скоростью образования триплетов из 51 и скоростью фосфоресценции может быть использована для определения эффективности процесса 7 1 5о в условиях, когда процессами бимолекулярного тушения можно пренебречь. [c.101]

    Поглощение возбуждающего излучения как донорной, так и акцепторной молекулами может усложнить интерпретацию сенсибилизированной флуоресценции при исследованиях син-глет-синглетного переноса. В то же время триплет-триплетный обмен можно исследовать лишь в системах, где поглощает только донорная молекула. Соответствующим выбором донорных и акцепторных молекул можно создать такую ситуацию,, когда триплет О расположен над триплетом А, так что возможен процесс переноса 0 - -А, а 51(0) находится ниже, чем 51(А), так что можно возбудить О, не возбуждая А. Требуемый порядок расположения энергетических уровней часто можно создать, выбрав ароматические карбонильные соединения в качестве доноров, а ароматические углеводороды в качестве акцепторов. На рис. 5.2 представлены энергии триплетного и [c.127]

    Только что описанный тип задержанной флуоресценции не обнаруживает такой же зависимости от температуры, как термически активированная задержанная флуоресценция Е-типа (разд. 4.6), и ее можно отличить таким образом. Но более сильным отличительным признаком является зависимость сигнала флуоресценции от интенсивности поглощенного света. Эта зависимость линейна в случае задержанной флуоресценции Е-типа, но квадратична в случае процесса триплет-триплетной аннигиляции. Кроме того, задержанная флуоресценция Е-типа имеет то же самое время жизни, что и триплет-синглетная фосфоресценция в том же растворе задержанная флуоресценция, возбуждаемая по механизму триплет-триплетной аннигиляции, должна иметь время жизни порядка половины времени жизн  [c.135]

    А (7, ) может образовать А (5 ) и при этом возможно наблюдение сенсибилизированной задержанной флуоресценции только за счет смешанной триплет-триплетной аннигиляции. Примером подходящей донорно-акцепторной пары является пара [c.136]

    Существенными являются стадии (3.18) и (3.19), где при взаимодействии возбужденных триплетов одна молекула образуется в возбужденном состоянии 5 а другая переходит в основное состояние. Излучательный переход из состояния 5 и приводит к возникновению замедленной флуоресценции. Хотя флуоресценция из 5] (стадия 3.21) имеет ту же константу скорости kf, что и быстрая флуоресценция, общая скорость затухания в этом случае меньше, так как процесс идет через реакции (3.18) и (3.19). [c.129]

    Полученные соотношения позволяют по результатам химических измерений определить характеристики элементарных процессов передйчи энергии. В частности, при достижении фотохимического равновесия с концентрациями [Оц]р и [От]р легко определить два отношения констант скоростей флуоресценции и синглет-триплет-ного перехода (71=/гфл/ ст) и констант скоростей образования цис- и транс-изомеров из олефинового триплета (v2 = W xt) пс таким уравнениям  [c.76]

    Скорости переходов. При изучении фотолюминесценции необходимо знать временные характеристики излучательных и конкурирующих с ними безызлучательных процессов дезактивации возбужденных состояний. Для излучательных процессов характерны следующие времена. Поглощение света происходит за время порядка одного колебания световой волны, т. е. около 10 с. Флуоресценция из самого нижнего возбужденного синглетного состояния происходят от 10 с (для я —я-переходов) до 10 (для я —п-переходов). Излучательные времена триплетных состояний лежат в пределах от 10 2 до с. Безызлучательные переходы из верхних возбужденных состояний происходят за время порядка 10 2 с. Скорость внутренней конверсии с нижнего возбужденного синглета в основное состояние часто сравнима со скоростью флуоресценции. Интеркомбинационная конверсия из нижнего синглетного состояния протекает за время порядка излучательного времени жизни флуоресценции. Р1нтеркомбинационные переходы из триплета в основной синглет происходят сравнительно медленно (Ю — 10 с в зависимости от условий). [c.57]

    Рассмотрим каждый из этих процессов дезактивации. Мономо-лекулярная дезактивация с константой ко состоит из следующих процессов фосфоресценции, безызлучательной диссипации энергии и процесса термической активации триплетов в синглетно-возбуж-денное состояние, обусловливающее замедленную флуоресценцию. Безызлучательный процесс диссипации энергии дает больший вклад в ко, чем другие процессы. [c.166]


    Анализ замедленной флуоресценции / -типа. Замедленнук> флоуресценцию, возникающую при триплет — триплетной аннигиляции, называют замедленной флуоресценцией Р-типа  [c.170]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Мы должны теперь дать некоторые объяснения природы за-преш,енного триплет-синглетного излучения. В разд. 2.6 мы полагали, что электрические дипольные переходы могут иметь место и при Д8 0, если S не дает хорошего описания системы. Оптические переходы между триплетными и синглетными состояниями могут наблюдаться, если триплет не является чистым, а содержит синглетную составляющую, и наоборот. В органических молекулах перемешивание синглетных и триплетных состояний происходит за счет слабого спин-орби-тального взаимодействия. Так как спин-орбитальное взаимодействие между состояниями одной и той же конфигурации запрещено, то, например, состояние (я, я ) может перемешаться с состояниями (п, я ) и .,(о, я ) и не может с состоянием (я, л ). Аналогично состояние (п, л ) перемешивается с состоянием (я, я ). Поскольку радиационный переход из состояния (я, я ) в основное состояние полностью разрешен, тогда как переход из (п, я ) в общем случае частично запрещен, следовательно, переход Т(п, я )->-5о является более разрешенным, чем (я, я )- 5о. Таким образом, относительная вероятность триплет-синглетных переходов из состояний (п, я ) и (я, я ) отличается от той, что наблюдается при синглет-син-глетных переходах. Экспериментальные исследования естественных времен жизни флуоресценции находятся в соответствии с этими предсказаниями в ароматических углеводородах, имеющих нижнее триплетное состояние (я, я ), радиационное время жизни равно приблизительно 1—10 с, в то время как у карбонильных соединений нижним триплетным состоянием является уровень (л, я ), характерное время жизни которого обычно равно 10 2—10- с. [c.100]

    В первых экспериментах по наблюдению фосфоресценции флуоресцеина в борнокислотных стеклах было обнаружено, что по крайней мере два механизма ответственны за появление долгоживущего излучения эти процессы были названы а- и р-фосфоресценцией. -Фосфоресценция — обычное триплет-син-глетное излучение, описанное в предыдущих разделах его интенсивность относительно нечувствительна к температуре. Существует несколько типов а-фосфоресценции, и в этом разделе мы обсудим тот из них, который известен как Е-тип задержанной флуоресценции и был обнаружен впервые при исследовании эозина (Р-тип задержанной флуоресценции, обнаруженный при изучении флуоресценции пирена, будет упомянут в разд. 5.5). [c.109]

    И донор, и акцептор являются обычно молекулами одинаковой химической природы, так что реакция (5.32) обеспечивает способ образования возбужденных синглетов, когда в системе присутствуют только триплеты. Кумуляция энергии двух трнп-летных возбуждений, известная как триплет-триплетное тушение или триплет-триплетная аннигиляция , служит одним из механизмов происхождения задержанной флуоресценции (см. также разд. 4.6). Например, в антрацене распад флуоресценции описывается двухкомпонентной кривой, причем одна компонента соответствует нормальному времени жизни флуоресценции, а другая — медленному, хотя спектр излучения обеих компонент идентичен. Механизм возбуждения (исключая безызлучательный распад или тушение) включает следующие процессы  [c.135]

    Задержанная флуоресценция, вызванная триплет-триплет-ной аннигиляцией, называется также задержанной флуоресценцией Р-типа, поскольку она наблюдалась в растворах пирена. Однако задержанная флуоресценция в случае пирена имеет также другую характерную черту, а именно задержка излучения возникает в основном с эксимера РР (5о51), где Р — пирен, в то время как нормальная флуоресценция при умеренных концентрациях раствора обнаруживает полосы излучения как мономера, так и эксимера. Объяснение связано с механизмом триплет-триплетной кумуляции энергии. Если синглетный эксимер является интермедиатом, то излучение будет иметь место, прежде чем установится равновесие концентраций эксимера и мономера Р (Г,)+Р (Г,) РР 5о51) Р, 5 5 )+йг (5.40) [c.136]

    Явление замедленной флуоресценции служит мощным средством для исследования свойств триплетов, концентрация которых в растворах мала. Кроме того, с помощью измерения замедленной флуоресценции можно получать информацию о скоростях всех трех процессов интеркомбинационной конверсии, а также непосредственно наблюдать триилет-триплетное тушение. [c.132]


Смотреть страницы где упоминается термин Флуоресценция триплетов: [c.147]    [c.75]    [c.55]    [c.101]    [c.102]    [c.164]    [c.170]    [c.55]    [c.101]    [c.102]    [c.164]    [c.170]    [c.105]    [c.108]    [c.131]    [c.137]    [c.151]    [c.130]   
Фото-люминесценция растворов (1972) -- [ c.83 , c.89 , c.293 ]




ПОИСК





Смотрите так же термины и статьи:

Флуоресценция



© 2025 chem21.info Реклама на сайте