Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Триплетов время жизни

    Спиновые ограничения иа систему триплет О + триплет О3 делают возможной только одну из четырех ориентаций, в то время как для дублет N0 + триплет О допустима одна ориентация из двух. Заметим, что для любого из образующихся возбужденных электронных состояний время жизни будет меньше, чем для основного состояния, так как их энергия Е должна быть меньше. [c.276]

    Синглет-синглетные переходы могут происходить На относительно больших расстояниях, до 40 А, а для триплетных переходов обычно требуется столкновение молекул [26]. С помош,ью фотосенсибилизации обоих типов можно получить возбужденные состояния в тех случаях, когда их трудно генерировать прямым облучением, что делает фотосенсибилизацию важным методом проведения фотохимических реакций. Особенно это касается триплет-триплетных переходов, поскольку триплетные состояния гораздо труднее, а иногда и невозможно получить прямым облучением и поскольку перенос энергии путем фотосенсибилизации намного вероятнее для триплетных состояний, имеющих большее время жизни, чем синглетные состояния-Фотосенсибилизация возможна лишь в тех случаях, когда энергия донора О превышает энергию возбужденного акцептора А и избыток энергии переходит в кинетическую энергию продуктов О и А. Так что прежде, чем проводить фотосенсибилизацию, следует выяснить энергию этих состояний. В табл. 7.5 приведены значения энергий некоторых триплетных состояний [27]. Выбирая фотосенсибилизатор, следует избегать тех соединений, которые поглощают в той же области, что и акцептор, так как в противном случае последний будет конкурентно поглощать свет [28]. Примеры использования фотосенсибилизации для проведения реакций см. т. 3, реакции 15-38 и 15-48. [c.316]


    Передачу энергии от сенсибилизаторов с низкой энергией возбуждения в триплетное состояние предложено [36] называть невертикальной. В работе [36] рассмотрена возможность передачи энергии на уже возбужденную молекулу олефина. Триплетная молекула сенсибилизатора при невертикальном переносе имеет значительное время жизни и успевает претерпеть 10 —10 столкновений с молекулами олефина, отобрав при-этом такую молекулу, для которой возможен вертикальный переход. Невертикальный перенос энергии возможен, если олефин образует так называемый фантом-триплет , у которого угол между я- и л -орбиталями составляет я/2 или я. Отмечалось выше (см. также рис. 4,а), что у такого фантом-триплета энергия возбуждения ниже, чем у обычного. [c.70]

    Тип перехода Время жизни синглет- Время жизни триплет- [c.614]

    Действительное время жизни триплета т определяется уравнением 1/т = Афс + + Д о[д]- -й,. [c.63]

    Если возбужденное состояние относительно устойчиво, то электрон, находящийся на возбужденном синглетном уровне может осуществить нерегламентированный правилами отбора интеркомбинационный переход (ИКП) и попасть на триплетный уровень возбужденного состояния Время жизни возбужденного триплетного состояния велико — от Ю до нескольких секунд, вероятность запрещенного триплет-синглетного перехода мала наблюдается явление фосфоресценции. [c.95]

    Бензофенон — нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет — триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и образуют кетильный радикал (Я = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет — триплетное поглощение нафталина Х = А 2 нм). Используя величину е для кетильных радикалов (3220 л моль см ), можно по уменьшению оптической плотности на длине волны 545 нм и по оптической плотности триплет — триплетного поглощения нафталина определить коэффициент экстинкции для нафталина  [c.192]

    Триплет-триплетный перенос энергии иногда рассматривается как отличное от синглет-синглетного переноса явление. Однако, если рассматривать механизм обменного взаимодействия, тот факт, что обе частицы А и О меняют свою спиновую мультиплетность, не имеет значения, поскольку реакция адиабатическая. Наблюдаемые же отличия в фотохимических процессах возникают в результате большого радиационного времени жизни триплетных состояний. Для среды, в которой процессы тушения и безызлучательной релаксации протекают медленно (например, в жестких стеклообразных матрицах), большое реальное время жизни триплетного донора приводит к тому, что даже неэффективный процесс переноса энергии успешно конкурирует с другими релаксационными процессами. В то же время сенсибилизированная фосфоресценция наблюдается только в таких системах, где процессы безызлучательной релаксации и тушения не являются основными путями дезактивации триплетного акцептора (т. е. вновь в стеклообразных матрицах, или для таких акцепторов, как диацетил). [c.127]


    Излучение, испускаемое при переходе между состояниями с одинаковой мультиплетностью (т. е. синглет-синглетные или триплет-триплетные переходы), называется флуоресценцией излучение, испускаемое при переходе между состояниями с различной мультиплетностью, называется фосфоресценцией. Время жизни флуоресценции органических молекул составляет около 10- с, а время жизни фосфоресценции — от 10- с вплоть до нескольких минут или более, потому что переходы между состояниями с различной мультиплетностью очень мало вероятны. [c.550]

    Только что описанный тип задержанной флуоресценции не обнаруживает такой же зависимости от температуры, как термически активированная задержанная флуоресценция Е-типа (разд. 4.6), и ее можно отличить таким образом. Но более сильным отличительным признаком является зависимость сигнала флуоресценции от интенсивности поглощенного света. Эта зависимость линейна в случае задержанной флуоресценции Е-типа, но квадратична в случае процесса триплет-триплетной аннигиляции. Кроме того, задержанная флуоресценция Е-типа имеет то же самое время жизни, что и триплет-синглетная фосфоресценция в том же растворе задержанная флуоресценция, возбуждаемая по механизму триплет-триплетной аннигиляции, должна иметь время жизни порядка половины времени жизн  [c.135]

    Хотя скорость триплет-синглетного переноса энергии незначительна (поскольку он запрещен по спину), при определенных условиях процесс переноса возбуждения от долгоживущего триплетного донора на синглетный уровень акцептора может конкурировать с другими процессами дезактивации триплетного состояния донора. Этот запрещенный процесс начинает играть существенную роль только тогда, когда остальные конкурирующие процессы дезактивации возбужденного состояния также запрещены. Из уравнения (3.28) видно, что если разрешен переход в молекуле А, то, несмотря на запрещение перехода в молекуле О, резонансный перепое энергии может происходить с большой вероятностью, поскольку большее время жизни компенсирует малую скорость переноса. Другая ситуация получается, если запрещен поглощательный переход в молекуле А, но разрешен излучательный переход в молекуле О (синглет-триплетный перенос). В этом случае перенос энергии по резонанс- [c.136]

    Бензофенон-нафталин. При импульсном облучении бензофенона в присутствии нафталина происходит триплет-триплетный перенос энергии с бензофенона на нафталин. Поскольку триплетное состояние бензофенона является очень реакционноспособным, его время жизни мало ( 5 мкс). Триплетные молекулы бензофенона отрывают атом водорода от растворителя и дают кетильный радикал (Х = 545 нм). При добавлении нафталина уменьшается выход кетильных радикалов и появляется триплет-триплетное поглощение нафталина ( =412 нм). Используя известную величину е для ке- [c.318]

    За время жизни пары ( М М ) происходит спиновая динамика, происходят переходы с изменением суммарного спина S. Одним из механизмов изменения S для пары триплетов является, например, диполь-дипольное взаимодействие двух неспаренных электронов в триплетной возбужденной молекуле. Из этих рассуждений видно, что аннигиляция триплетов формально аналогична рекомбинации радикалов имеется спиновое правило отбора для процесса, образуется промежуточное состояние пары реагентов, в котором осуществляется спиновая динамика, и пара может переходить из реакционноспособного состояния в нереакционноспособное и наоборот. В итоге, также как и для рекомбинации радикалов, аннигиляция триплетов обнаруживает зависимость от постоянного и переменного магнитных полей. [c.142]

    Триплеты диацетила имеют квантовый выход 0,25 для флуоресценции, а измеренное время жизни триплетного состояния равно 10 с. Если фосфоресценция диацетила тушится соединением Q со скоростью, определяемой диффузией (10 М -С ), то какая концентрация Q требуется для уменьшения выхода фосфоресценции вдвое  [c.562]

    Изучение ассоциации олигонуклеотидов показало, что наиболее благоприятно для биологической функции спаривание триплетов. Дублеты обладают слишком низкими значениями К, квартеты дают, напротив, слишком сильное связывание. Время жизни пары кодон — антикодон не должно превышать нескольких миллисекунд, так как в противном случае оно будет лимитировать скорость работы биосинтетической системы. [c.266]

    Ранее было замечено (стр. 121), что фосфоресценция, обусловленная триплет-синглетными переходами, обычно не наблюдается в жидких растворах, так как триплетное состояние имеет сравнительно большое естественное радиационное время жизни, и дезактивация в результате столкновений происходит чаш е, чем эмиссия. Оказалось возможным, однако, наблюдать фосфоресценцию эозина в глицерине или этаноле и измерить отношение ее интенсивности к интенсивности флуоресценции [44]. Это было сделано при помощи спектрофлуориметра и двух вращающихся секторов, один из которых служил для прерывания пучка возбуждающего света, другой — для прерывания пучка излученного света. Когда оба прерывателя находятся в одинаковой фазе, измеренная интенсивность обусловлена фосфоресценцией плюс флуоресценцией если они в разных фазах — то только фосфоресценцией. Это очень перспективный метод для определения скоростей перехода между триплетным и синглетным состояниями. По сравнению с флеш-методом он имеет то преимущество, что для облучения можно использовать монохроматический свет с различной частотой, кроме того, можно точно измерить квантовые выходы наконец, стационарная концентрация молекул в триплетном состоянии мала, и поэтому можно пренебречь триплет-триплетным тушением. С другой стороны, если естественное время жизни велико или тз шение сильно, эмиссия будет очень слабой [c.165]


    Сохранение спина в элементарных реакциях имеет важное следствие химические реакции, требующие изменения спина, строго запрещены. Например, при встрече двух радикалов их электронные спины либо складываются (суммарный спин в паре 5=1, триплетное состояние), либо вычитаются (5=0, синглет-ное состояние). Если продукты рекомбинации (или диспропорцио-нирования) радикалов диамагнитны, т. е. их спин равен нулю, то они могут образоваться только из синглетных пар триплетные пары не реагируют. Однако за время жизни триплетной пары может произойти триплет-синглетный переход, который превращает ее в синглетную пару, способную реагировать. Здесь спиновый запрет выполняется строго рекомбинация из триплетного состояния не происходит реакция как бы останавливается на стадии образования триплетной пары и выжидает пока спин в такой паре изменится и реализуется новое, синглетное состояние, из которого реакция снова продолжится, рождая молекулы продуктов в синг-летном состоянии. [c.13]

    Присоединению радикала к кислороду или к какой-либо другой триплетной молекуле (например, к возбужденному триплету ароматической молекулы или к триплетному карбену) предшествует образование пары, в которой спины могут либо складываться (5 = 2, квартетное состояние), либо вычитаться ( 5 =>/2, дублетное состояние). Конечным продуктом реакции присоединения является радикал (5 = /2, дублетное состояние), поэтому присоединение происходит только в дублетных парах квартетные пары не реагируют. Однако за время жизни пары может произойти превращение квартетной пары в дублетную, в которой происходит реакция. И в этохм случае (как и в предыдущем) можно условно считать, что квартет-дублетное превращение пары частично снимает запрет по спину. [c.13]

    Если же колшоненты мультиплета сливаются в широкий сигнал поглощения, то среднее время жизни (в сек) протона в данной молекуле определяется выражением /2/яА (где А — расстояние между пиками при отсутствии обмена, гц). Спектры молекул, способных обмениваться протонами, могут быть использованы для определения скоростей перехода протонов даже в тех случаях, когда среднее время жизни составляет величины порядка десятых и сотых долей секунды. Так, рассматривая спектр чистого этилового спирта (рис. 3-5), в котором сигнал гидроксильной группы представляет собой триплет (/ =5,0 гц), можно сделать вывод, что гидроксильные протоны обычного этилового спирта (рис. 3-3) обмениваются со скоростью, значительно большей, чем 11 раз в секунду (среднее время удержания протона составило бы в момент слияния пиков мультиплета 0,090 сек). [c.84]

    Несколько спектров поглощения короткоживущих радикалов наблюдались Портером и Виндзором [111] методом импульсного фотолиза для большого числа органических соединений в жидких растворителях, например для антрацена в гексане. Эти спектры были отнесены к триплет-триплетным переходам с самых нижних тринлетных состояний органических молекул. В некоторых случаях при одной вспышке до 50% молекул переходило в триплетное состояние. Время жизни молекул в их триплетных состояниях варьируется от 10 до 10 сек в зависимости от исследуемой молекулы и вязкости жидкой среды. Некоторые из этих спектров наблюдались в газовой фазе Портером и Райт [112]. [c.27]

    Переход синглетного возбужденного состояния в триплетное (Зг- Тг) энергетически выгоден, но происходит обычно сравнительно медленно в соответствии с так называемыми спектроскопическими правилами отбора согласно этим правилам, вероятность осуществления такого типа спонтанного изменения электронной конфигурации очень мала. Тем не менее, если время жизни синглетного состояния достаточно велико, то переход синглет — триплет (часто называемый интеркомбинационным переходом) может осуществляться в очень значительной части возбужденных синглет-ных молекул. [c.439]

    Теперь рассмотрим спектроскопию ЭПР молекул, а которых 1>. еет-ся более чем один неспаренный электрон. Примером может служить триплетное состояние нафталина, которое образуется при его УФ-облу-чении. Для регистрации спектра ЭПР использовали монокристалл дуро-ла, в кристаллическую решетку которого были внесены указанные частицы. Внедрению нафталина в решетку дурола помогает похожая форма этих молекул, при этом сильно увеличивается время жизни триплет-ного состояния нафталина. Спектр состоит из трех линий, причем [c.42]

    Хотя первые наблюдения фосфоресценции ограничивались стеклообразными матрицами, вскоре было доказано, что фосфоресценция может наблюдаться и в других фазах. Излучение паров диацетила — хорошо известный пример газофазной фосфоресценции. Жидкие растворы частиц, являющихся фосфоре-сцентными в низкотемпературных стеклах, также хорошо излучают при повышении температуры, пока безызлучательные переходы с 7[ на So не начинают преобладать. Существенно, конечно, чтобы растворитель не приводил к дезактивации триплетов, поэтому все тушащие примеси должны быть обязательно исключены. Остаточные примеси могут как ослаблять интенсивность излучения, так и уменьшать время жизни люминесценции. Для изучения фосфоресценции при комнатных температурах удобными растворителями являются перфтор-алканы. [c.99]

    Мы должны теперь дать некоторые объяснения природы за-преш,енного триплет-синглетного излучения. В разд. 2.6 мы полагали, что электрические дипольные переходы могут иметь место и при Д8 0, если S не дает хорошего описания системы. Оптические переходы между триплетными и синглетными состояниями могут наблюдаться, если триплет не является чистым, а содержит синглетную составляющую, и наоборот. В органических молекулах перемешивание синглетных и триплетных состояний происходит за счет слабого спин-орби-тального взаимодействия. Так как спин-орбитальное взаимодействие между состояниями одной и той же конфигурации запрещено, то, например, состояние (я, я ) может перемешаться с состояниями (п, я ) и .,(о, я ) и не может с состоянием (я, л ). Аналогично состояние (п, л ) перемешивается с состоянием (я, я ). Поскольку радиационный переход из состояния (я, я ) в основное состояние полностью разрешен, тогда как переход из (п, я ) в общем случае частично запрещен, следовательно, переход Т(п, я )->-5о является более разрешенным, чем (я, я )- 5о. Таким образом, относительная вероятность триплет-синглетных переходов из состояний (п, я ) и (я, я ) отличается от той, что наблюдается при синглет-син-глетных переходах. Экспериментальные исследования естественных времен жизни флуоресценции находятся в соответствии с этими предсказаниями в ароматических углеводородах, имеющих нижнее триплетное состояние (я, я ), радиационное время жизни равно приблизительно 1—10 с, в то время как у карбонильных соединений нижним триплетным состоянием является уровень (л, я ), характерное время жизни которого обычно равно 10 2—10- с. [c.100]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    Согласно правилу отбора спина А5 = 0, дальнодействующий кулоновский перенос энергии невозможен для любых процессов, протекающих с изменениями мультиплетности, и поэтому дальнодействующий триплет-триплетный перенос энергии должен быть исключен. Однако, поскольку спин-орбитальное взаимодействие допускает электрические дипольные оптические переходы с Д8 0 в сложных молекулах, кулоновский перенос может происходить по с1с1-механизму. Похоже, что этот перенос является более медленным, чем обменные процессы, в которых переходы для донора и акцептора полностью разрешены, но, так как реальное излучательное время жизни триплетных состояний также велико, дальнодействующий перенос энергии может все еще иметь значение наряду с излучением. Отсюда следует, что дальнодействующее взаимодействие, видимо, осуществляется только в системах, в которых тушение или интеркомбинационная конверсия не являются основными процессами потери три-плетпой энергии донора. Интересно, что процесс типа [c.131]

    Похоже, что замещение в положении 4 бензофенона влияет на эффективность фотовосстановления, изменяя характер возбужденного состояния. В табл. 6.1 представлены константы скорости восстановления триплетов бензофенона и некоторых его производных. Мы уже говорили о спектроскопии этих аномальных кетонов. Для арилкетонов конфигурации (п,я ) и (л,л ) гораздо ближе по энергии, чем для алкилкетонов и в случае некоторых замещенных производных низшим возбужденным состоянием может быть (л,л ). Например, время жизни фосфоресценции 4-фенилбензофенона почти в 50 раз больше, чем нормального бензофенона, если полагать, что нижний триплет является состоянием (л,л ). Это заключение подтверждается как структурой эмиссионных спектров, так и исследованиями ЭПР. В состоянии (я,л ) возбужденный карбонильный кислород не столь электронодефицитен, как в состоянии (л, л ), а энергия возбуждения частично делокализо-вана по л-системе, так что энергии активации не перекрываются. Вследствие этого состояние (л,л ) гораздо менее реакционноспособно, чем состояние (л, л ), поэтому фотовосстановление 4-фенилкетона будет неэффективным. У 4-метилкетона триплетное состояние, возможно, является смешанным, и скорость его восстановления лежит между таковыми для бензофенона и 4-фенилбензофенона. Если заместителями являются электронодонорные группы, как в аминобензофеноне, то нижними триплетами становятся состояния с переносом заряда [c.169]

    В разд. Непрямое спин-спиновое взаимодействие (разд. 9.3.2) было показано, что взаимодействие между соседними ядерными диполями по механизму непрямого спин-спинового взаимодействия вызывает расщепление сигналов и приводит к появлению характеристических мультиплетов. Эти сигналы содержат информацию о структуре молекул. Например, присутствие квадруплета и триплета в спектре свидетельствует о наличии этильной группы в молекуле. В разд. 4Метод ЯМР и ЯМР-спектрометр (разд. 9.3.2) мы узнали о том, что спектры ЯМР на ядрах С записывают обычно с использованием широкополосной протонной развязки, с помощью которой устраняются спин-спиновые взаимодействия. Это достигается путем облучения мощным полем с частотой, соответствующей переходу протонов. При этом ориентация спинов протонов меняется очень быстро, время жизни каждого состояния спина уменьшается и результирующее взаимодействие становится равным нулю. Исчезает расщепление сигналов, мультиплеты становятся сипглетами. Такая процедура широкополосной протонной развязки является гетероядерной развязкой, поскольку облучают протоны, а наблюдают резонансные сигналы ядер С. Возможно проведение и гомоядерной развязки эти эксперименты очень важны и используются, когда нужно в спектроскопии ПМР идентифицировать сигналы, принадлежащие взаимодействующим друг с другом протонам. В качестве примера можно привести ацетилсалициловую кислоту, ароматическая часть спектра которой приведена на рис. 9.3-30,а. Для того чтобы продемонстрировать этот подход, облучим образец резонансными частотами дублета дублетов, с центром при 6 = 7,95, соответствующего протонам Н-6 (протон в орто-положении к карбоксильной группе). Сравнивая исходный и развязанный спектр (рис. 9.3-30,6), мы видим, что дублет триплетов упростился (<У = 7,25), так что одно орто-взаимодействие теперь отсутствует. Следовательно, этот сигнал можно отнести к Н-5. Однако мы также видим упрощение другого дублета— дублета триплетов при 6 = 7,5, поскольку л ета-взаимодействие J(H-4/H-6) [c.246]

    СДВИГ, отличающийся от химического сдвига резонансных линий, даваемых гранс-протонами. При комнатной температуре спектр ядерных протонов содержит две слегка расщепленные триплетные системы полос, что характерно для неполностью разрешенного спектра поглощения системы А2В2. Триплеты находятся на расстоянии 27 гц при поле 40 Жгц это означает, что среднее время жизни данной молекулы имина до инверсии азота должно быть значительно больше 0,04 сек. При нагревании до 120—130° водородные атомы в кольце теряют определенное положение по отношению к этильной группе, и время жизни становится значительно меньше 0,04 се/с. При температуре около 110° происходит слияние триплетов в один пик около центра спектра. [c.310]


Смотреть страницы где упоминается термин Триплетов время жизни: [c.43]    [c.58]    [c.87]    [c.164]    [c.75]    [c.58]    [c.87]    [c.164]    [c.83]    [c.105]    [c.77]    [c.288]    [c.291]    [c.129]    [c.141]    [c.77]    [c.64]    [c.630]    [c.421]   
Фото-люминесценция растворов (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Время жизни



© 2025 chem21.info Реклама на сайте