Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия от триплета к синглету

    Однако процесс перекрестного взаимодействия триплетов [уравнение (172)] может, вообще говоря, дать и некоторое количество синглет-возбужденных молекул донора, если сумма энергий триплетов, больше, чем энергия синглета донора, что, очевидно, имеет место в системах, проявляющих сенсибилизованную антистоксову замедленную флуоресценцию. Поэтому в таких системах введение небольших концентраций акцептора должно вызвать сенсибилизованную замедленную флуоресценцию донора, возбуждаемого в процессе [c.124]


    Обш им критерием применимости теории Ферстера являются условия слабого взаимодействия и быстрой релаксации. Следовательно, на расстояниях порядка диаметра молекул в растворах или порядка постоянной решетки в кристаллах приближение, основанное на малости взаимодействия, может быть несправедливо. Индуктивно-резонансная миграция возможна не только между синглетными уровнями донора и акцептора. Доказано также суш ествование интеркомбинационно запреш енных процессов переноса энергии триплет-синглетного и синглет-три- [c.402]

    В 1961 г. [3] было экспериментально показано, что триплетные молекулы могут отдавать энергию электронного возбуждения также с помощью безызлучательного переноса по обычному индуктивно-резонансному механизму. В результате переноса молекула акцептора возбуждается в синглетное возбужденное состояние, т. е. Гд + Тд Тд. Явление триплет-синглет- [c.101]

    Правила Гунда и объяснение меньшей энергии триплетов по сравнению с синглетами для одной и той же орбитальной конфигурации [c.214]

    Тройка слева от скобки означает триплет, единица — синглет. При переходе одного и того же типа энергия трип-летного состояния всегда меньше энергии соответствующего синглетного состояния. Переход типа и — я требует обычно затраты меньшей энергии, чем переход я—я. Это позволяет нарисовать следующую схему электронных уровней и энергетических переходов для формальдегида и других аналогичных возбужденных молекул, содержащих [c.277]

    Зависимость констант скорости и безызлучательных времен жизни для безызлучательных триплет-синглетных переходов от разности энергий триплет — синглет для некоторых ароматических углеводородов [c.241]

    Синглет-синглетные переходы могут происходить На относительно больших расстояниях, до 40 А, а для триплетных переходов обычно требуется столкновение молекул [26]. С помош,ью фотосенсибилизации обоих типов можно получить возбужденные состояния в тех случаях, когда их трудно генерировать прямым облучением, что делает фотосенсибилизацию важным методом проведения фотохимических реакций. Особенно это касается триплет-триплетных переходов, поскольку триплетные состояния гораздо труднее, а иногда и невозможно получить прямым облучением и поскольку перенос энергии путем фотосенсибилизации намного вероятнее для триплетных состояний, имеющих большее время жизни, чем синглетные состояния-Фотосенсибилизация возможна лишь в тех случаях, когда энергия донора О превышает энергию возбужденного акцептора А и избыток энергии переходит в кинетическую энергию продуктов О и А. Так что прежде, чем проводить фотосенсибилизацию, следует выяснить энергию этих состояний. В табл. 7.5 приведены значения энергий некоторых триплетных состояний [27]. Выбирая фотосенсибилизатор, следует избегать тех соединений, которые поглощают в той же области, что и акцептор, так как в противном случае последний будет конкурентно поглощать свет [28]. Примеры использования фотосенсибилизации для проведения реакций см. т. 3, реакции 15-38 и 15-48. [c.316]


    Сенсибилизаторами могут быть многие вещества. Для исследований по триплетной сенсибилизации некоторые преимущества имеют кетоны. Карбонильные соединения обладают высокими выходами триплетных состояний при малом синглет-триплетном расщеплении (разнице в энергиях между уровнями 1 и Т ) и сравнительно высоких энергиях триплетов, так что энергетические соотношения, подразумеваемые на рис. 5.2, могут быть легко выполнены. Для экспериментов в конденсированной фазе часто применяется бензофенон, а в газовой фазе — диацетил. Исторически в газовой фазе широко использовалась ртуть из-за ее летучести при комнатной температуре и доступности ртутных ламп, излучающих на резонансной линии Х = = 253,7 нм. В качестве фотосенсибилизаторов применяются и другие летучие металлы например, кадмий, цинк, таллий, индий, кальций, натрий и галлий в области вакуумного ультрафиолета полезными сенсибилизаторами являются благородные газы. [c.140]

    Поэтому, чтобы данный процесс был разрешен по спину, эти две последовательности должны иметь общий член. По обменному механизму могут происходить син-глет-синглетный и триплет-триплетный переносы энергии. Как и синглет-синглетный перенос энергии, триплет-триплетный перенос широко распространен. При переносе энергии от триплета к триплету наблюдается сенсибилизированная фосфоресценция. Этот вид переноса используют для заселения триплетных уровней акцепторов, которые трудно заселить другим путем, а также для обнаружения триплетных состояний некоторых соединений, имеющих малый выход фосфоресценции. [c.138]

    Механизм гасящего эффекта ионов переходных металлов, характерный как для 1-го, так и для 2-го типа комплексонов, весьма сложен. По всей вероятности, включение -орбиталей катиона переходного металла в общую я-систему молекулы модифицирует электронное строение лиганда При этом может нарушаться запрет синглет-триплетного перехода и возникать интерконверсия. Затем происходит процесс внутримолекулярной вибрационной деградации электронной энергии триплет-возбужден-ной молекулы до основного состояния, не сопровождающийся флуоресцентным излучением. Процессу интерконверсии способствует, как известно, большая атомная масса ионов-комплексообразователей, обусловливающая значительное спин-орбиталь- [c.292]

    Поскольку такого типа замедленную флуоресценцию впервые наблюдали у эозина, ее называют замедленной флуоресценцией типа эозина или типа Е. Подобная флуоресценция должна существовать у соединений, имеющих большой выход триплетов и небольшую разность энергий триплетного п первого возбужденного синглет-ного состояний. Замедленная флуоресценция типа Р возникает за счет взаимодействия между триплетными молекулами, в результате которого одна из молекул попадает в возбужденное синглетное состояние  [c.54]

    Фосфоресценция, как правило, происходит после заселения уровня Г) посредством безызлучательного синглет-триплетного перехода с уровня 5], который в свою очередь возбуждается в результате поглощения света. Состояние 1 обычно имеет меньшую энергию, чем состояние 5ь поэтому долгоживущее излучение (фосфоресценция) является более длинноволновым, чем короткоживущее излучение (флуоресценция). Относительная интенсивность флуоресценции и фосфоресценции зависит от скорости излучения и интеркомбинационной конверсии с 5 абсолютный квантовый выход зависит также от меж- и внутримолекулярных процессов переноса энергии, фосфоресценция конкурирует не только со столкновительным тущением Ти но и с интеркомбинационным переходом на 5о. Разница между общей скоростью образования триплетов из 51 и скоростью фосфоресценции может быть использована для определения эффективности процесса 7 1 5о в условиях, когда процессами бимолекулярного тушения можно пренебречь. [c.101]

    Согласно правилу Гунда, триплетные уровни лежат ниже, чем соответствующие им синглетные уровни. Излучательный переход из нижнего триплетного состояния в основное называется фосфоресценцией. Излучательные переходы между состояниями разной мультиплетности, например между синглетами и триплетами, теоретически запрещены. В действительности, вследствие спин-орби-тального взаимодействия такие переходы наблюдаются, хотя они И менее вероятны, чем синглет — синглетные или триплет — триплетные переходы. Триплетные молекулы легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например [c.53]

    Эти соображения, касающиеся спиновой мультиплетности, приводят к простейшему способу описания состояний. Если имеют значение лишь уровни энергий состояний и их мультиплетность, то их можно пронумеровать, основываясь на мультиплетности. В общем случае, когда основное состояние является синглетом, оно обозначается 5о, а возбужденные синглет-ные состояния записываются в виде 5 , и т. д. в порядке возрастания их энергии. Триплетные состояния записываются как Ть и т. д., за исключением То, поскольку триплет не является основным состоянием. [c.35]

    Триплет-триплетный перенос энергии иногда рассматривается как отличное от синглет-синглетного переноса явление. Однако, если рассматривать механизм обменного взаимодействия, тот факт, что обе частицы А и О меняют свою спиновую мультиплетность, не имеет значения, поскольку реакция адиабатическая. Наблюдаемые же отличия в фотохимических процессах возникают в результате большого радиационного времени жизни триплетных состояний. Для среды, в которой процессы тушения и безызлучательной релаксации протекают медленно (например, в жестких стеклообразных матрицах), большое реальное время жизни триплетного донора приводит к тому, что даже неэффективный процесс переноса энергии успешно конкурирует с другими релаксационными процессами. В то же время сенсибилизированная фосфоресценция наблюдается только в таких системах, где процессы безызлучательной релаксации и тушения не являются основными путями дезактивации триплетного акцептора (т. е. вновь в стеклообразных матрицах, или для таких акцепторов, как диацетил). [c.127]


    Метод исследования триплетных состояний по фотосенсибилизации предложен Хэммондом и сотр. Идея метода частично состоит в использовании скорости изомеризации возбужденного триплета в качестве меры скорости его заселения (папример, индикатором может служить скорость г цс-транс-изомеризации пента-1,3-диена, 1,2-дихлорэтилена или 2-пентена). Триплетное состояние акцептора может быть заселено при переносе энергии от триплетного донора, и если синглет акцептора лежит выше уровней донора (как на рис. 5.2), то единственным возбужденным состоянием акцептора, которое может быть заселено, является триплетное. Если О (ГО лежит достаточно высоко над А (Т ), то перенос энергии контролируется диффузией (см. разд. 5.2), и при умеренных концентрациях скорость изомеризации совпадает со скоростью заселения О (ГО, поскольку скоростью межмолекулярного запрещенного синглет-триплетного [c.140]

    В этом разделе мы рассмотрим причины реакционной способности электронно-возбужденных состояний, связанные с особенностями распределения электронов в возбужденных частицах. Как мы уже видели в разд. 5.2, столкновительная передача энергии может быть эффективной только в адиабатических процессах, протекающих по непрерывной потенциальной поверхности, которая связывает реагенты с продуктами. Говорят, что в этом случае реагенты и продукты коррелируют. Наиболее важны правила корреляции электронного спина. Так как квантовое число S является достаточным для описания систем, то общий электронный спин сохраняется. Такое утверждение не согласуется с представлениями о том, что триплетное состояние сенсибилизатора, подобного бензофенону, возбуждает триплет акцептора, хотя энергетика системы также может определять преимущественное образование триплета по сравнению с синглетом (см. разд. 5.6). Аналогичные доводы применимы к сохранению спина в таких реакциях, как присоединение, отщепление или обмен, в которых происходят химические изменения. По этому правилу нельзя сказать, будет ли протекать реакция, а только можно сказать, пе запрещена ли она законами квантовой механики. Адиабатической реакции могут препятствовать другие факторы, такие, как высокая энергия активации или чрезмерные геометрические искажения. При дальнейшем изложении материала в этом разделе всегда будут иметься в виду правила, разрешающие реакцию, но не определяющие ее вероятность [c.155]

    Расчеты методом молекулярных орбиталей аЬ initio приводят к предсказанию следующих значений углов НСН для метилена (СНг) для триплетного карбеца и 105° для синглетного, причем триплет должен иметь примерно на 10 ккал/моль более низкую энергию, чем синглет [1].. [c.265]

    Перенос энергии возбуждения синглетов или триплетов, соответствующий уравнениям (5.14) и (5.47), осуществляется путем столкновения молекул при их диффузии. При этом молекулы должны при столкновении сближаться на расстолпие Гц, соответствующее сумме их эффективных радиусов. Наряду с этим обычным диффузионным механизмом переноса энергии возможен другой, называемый резонансным. При этом энергия возбуждения переносится на расстояния значительно большие (5—10 нм), чем при диффузионном механизме. Критическое расстояние Но, которое соответствует равным вероятностям излучения и переноса энергии, может быть приближенно вычислено из спектральных данных перекрывания спектра люминесценции донора и спектра поглощения акцептора. Величина Но может быть определена экспериментально и рассчитана с помощью концентрации тушителя [Р которая соответствует равным вероятностям переноса энер- [c.117]

    При фотохимическом возбуждении новые энергетические уро1 ни могут различаться спинами электронов. Состояния с пара лельными спинами (триплеты) имеют более низкую энергию, че состояния с антипараллельными спинами (синглеты). При возбу дении молекулы атомом сенсибилизатора выполняется правил Вигнера, по которому перенос энергии между возбужденной част цей и молекулой в основном состоянии разрешен только при сохр нении полного спина системы. Работы Лейдлера показали, чт правило сохранения спина позволяет объяснить характер ряд фотохимических реакций углеводородов. Основное состояние ол( фина с заполненной я-орбиталью (спины антипараллельны) — си1 глет возбуждение в триплетное состояние представляет собой з прещенный переход. Не следует понимать это как отсутствие во бужденных триплетных состояний, но такие молекулы будут обр зовываться при безизлучательной потере энергии возбужденным синглетными молекулами. [c.66]

    С точки зрения простой теории МО, если отсутствует орбитальное вырождение, синглетное и триплетное состояния без учета электрон-электронпого взаимодействия обладают одинаковой энергией. Триплет-синглетное расщепление происходит вследствие взаимодействия электронов друг с другом, и триплетное состояние оказывается по энергии ниже, чем синглетное. Величина синглет-триплетного расщепления зависит до некоторой степени от конфигурационного взаимодействия 183] (при учете которого пред- [c.102]

    В этом случае число резонансных форм на единицу больше, чем для ортогонального конформера. Однако, если это предсказание и оказывается правильным для триплетного состояния, оно совершенно неверно для синглета. Энергия триплета падает, тогда как энергия синглета повьшшется (рис. 3.8) [82]. Причина этого заключена в природе нечетных молекулярных орбиталей, как показано на схеме (3-47)  [c.101]

    Энергетический барьер между ВгОН и Вг+, вероятно, должен быть меньшим, чем между СЮН2 и С1+, так как энергия перехода триплет — синглет, безусловно, должна быть начителъно нии е для 4р-электронов брома, чем для о/>-электронов хлора. [c.289]

    Недавно Зибранд [322] распространил теорию Робинсона и Фроша на более общий случай ангармонических колебаний многоатомной молекулы. Для ароматических углеводородов им получены зависимости вероятности безызлучательных триплет-синглет-ных переходов от энергии триплетного уровня и от температуры, хорошо согласующиеся с экспериментом. Следует отметить также работы австралийских авторов [323, 324], которые, как и Робинсон, главную роль в безызлучательной дезактивации отводят внутримолекулярным колебаниям, а среду считают энергетическим резервуаром. На еще один возможный путь размена электронной энергии обратили внимание Нойес и сотр. [325] многие органические многоатомные молекулы, находясь в возбужденном состоянии, могут изомеризоваться, давая при этом невозбужденный изомер, а затем снова перестраиваться в исходную молекулу, но находящуюся уже в основном состоянии. На каждой стадии этого пути в колебательную энергию превращается не несколько электрон-вольт (как при одностадийной дезактивации), а значительно меньшие порции энергии.— Прил[,. ред. [c.245]

    Полученные соотношения позволяют по результатам химических измерений определить характеристики элементарных процессов передйчи энергии. В частности, при достижении фотохимического равновесия с концентрациями [Оц]р и [От]р легко определить два отношения констант скоростей флуоресценции и синглет-триплет-ного перехода (71=/гфл/ ст) и констант скоростей образования цис- и транс-изомеров из олефинового триплета (v2 = W xt) пс таким уравнениям  [c.76]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Высокие значения констант скорости и их относительная нечувствительность к природе молекулы-донора позволяют лредположить, что синглет-синглетный перенос энергии контролируется процессом диффузии. Расчет константы скорости реакции, контролируемой диффузией, для частиц одинакового размера с использованием уравнения Дебая (4.8) дает для гексана при 28°С значение e 2,4-10 дм /(моль-с), которое находится в качественном согласии с данными табл. 5.3. Еще лучшее согласие может быть получено, если уравнение для диффузионной константы скорости модифицировать для случая отсутствия сил трения тогда величина kg. для гексана при 28 С составляет 3,5-Ю о дмз/(моль-с). Константы скорости для триплет-триплетного переноса энергии, приведенные в табл. 5.2, также приближаются к пределу, ограничиваемому диффузией, при отрицательном значении АЕ. [c.126]

    И донор, и акцептор являются обычно молекулами одинаковой химической природы, так что реакция (5.32) обеспечивает способ образования возбужденных синглетов, когда в системе присутствуют только триплеты. Кумуляция энергии двух трнп-летных возбуждений, известная как триплет-триплетное тушение или триплет-триплетная аннигиляция , служит одним из механизмов происхождения задержанной флуоресценции (см. также разд. 4.6). Например, в антрацене распад флуоресценции описывается двухкомпонентной кривой, причем одна компонента соответствует нормальному времени жизни флуоресценции, а другая — медленному, хотя спектр излучения обеих компонент идентичен. Механизм возбуждения (исключая безызлучательный распад или тушение) включает следующие процессы  [c.135]

    Другой способ влияния мультиплетности на реакционную способность частиц демонстрируется на примере трехатомной молекулы метилена, СНг. Исследования по импульсному фотолизу указывают на то, что основное состояние метилена является триплетным, хотя имеется первый возбужденный сииглет, лежащий незначительно выше основного состояния (энергия возбуждения 30 кДж/моль). При фотолизе H2N2 или СНгСО преимущественно образуется метилен в синглетном состоянии с небольшой примесью триплетного метилена. Интеркомбинационная конверсия от синглета к триплету индуцируется инертными газами. Химическая реакционная способность триплетных и синглетных частиц совершенно различна. Синглетное состояние реагирует с Нг и СН , на три порядка быстрее, чем триплетное. Синглетный СНг внедряется в связь С—Н алканов, в то время как триплетный СНг отрывает атомы Н  [c.152]

    Эта реакция фотовосстаиовления будет описана в разд. 6.6.) В случае такого донора водорода, как eHj H(ОН)СеНа, в концентрации 0,1 моль/дм квантовый выход разложения беи-зофенона (фв) близок к единице. Один этот факт исключает возможность рассмотрения возбужденного синглета бензофено-iia в качестве участника реакции. Константа скорости отрыва атома водорода синглетом должна быть менее 10 дм У(мольХ Хс), поскольку физическое тушение S l протекает по крайней мере в 100 раз быстрее и контролируется диффузией ( q> >10 ° дм (моль с)). Константа скорости интеркомбинационной конверсии S l T i около 10 ° с , так что конкуренция между отрывом водорода и интеркомбинационной конверсией (IS ) накладывает ограничение на <рв порядка (10 х0,1/10 °) = 10 при [RH]=0,1 моль/дм для реакции S,. В то же время процессы диссипации энергии для T l протекают гораздо медленнее, чем для Si (например, константа скорости IS Ti Sq для бензофенона около 10 С ), и реакция эффективно конкурирует с другими процессами. Дальнейшее утверждение, что триплет является наиболее важной активной частицей, основано на сравнении данных по скорости, полученных именно для триплета, с полученными из рассмотрения кинетических зависимостей фв в реакции фотовосстановления для неизвестного состояния. Триплет бензофенона был идентифицирован в экспери- [c.154]


Смотреть страницы где упоминается термин Энергия от триплета к синглету: [c.184]    [c.139]    [c.121]    [c.130]    [c.103]    [c.289]    [c.259]    [c.43]    [c.75]    [c.87]    [c.87]    [c.87]    [c.87]    [c.105]    [c.108]    [c.134]    [c.137]    [c.154]   
Фото-люминесценция растворов (1972) -- [ c.94 , c.96 , c.97 ]




ПОИСК







© 2025 chem21.info Реклама на сайте