Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция азота

    Удс.лы1ая поверхность силикагеля, найденная методом низкотемпературной адсорбции азота, составляет 4,1-10 м /кг. Плотность силикагеля 2,2 г/см . Рассчитайте средний диаметр частиц силикагеля, [c.68]

    VII-9. Кинетика синтеза аммиака исследовалась Темкиным и Пыжовым . Суммарная скорость процесса определяется скоростью адсорбции азота. При выводе кинетического уравнения было использовано подтвержденное экспериментально уравнение изотермы адсорбции в логарифмическом виде  [c.237]


    Кинетика реакции образования аммиака. Основой для описания кинетики этой реакции вплоть до настоящего времени является уравнение Темкина и Пыжева 207. Согласно исследованиям этих авторов, скорость реакции определяется адсорбцией азота на активных центрах катализатора. [c.313]

    Вычислите константы в уравнении Лэнгмюра и х1т при 23,8 х X 10 Па (опытное значение х1т = 30,8 мм ), если зависимость адсорбции азота на слюде от давления следующая  [c.341]

    Удельную поверхность катализатора обычно измеряют методом БЭТ по физической адсорбции азота. На основании предположений о форме частиц и их известной плотности можно рассчитать средний диаметр частиц. Если частицы порошка агломерированы, этот способ даст результаты, не согласующиеся с результатами, найденными по измерениям уширения рентгеновских линий. Для нанесенных металлов и многокомпонентных оксидных систем общая поверхность образца не является очень важной характеристикой. Поверхность нанесенных металлов, как правило, определяют методом селективной хемосорбции. При этом приходится предположить, что на носителе адсорбция не происходит, и в интерпретации результатов можно быть уве- [c.30]

    Для частиц третьей группы — зерен молотого кварца удельную поверхность определяли по адсорбции азота. Сопоставление Со с данными по продувке даёт среднее значение /Сш = 5. Аналогичные результаты получены при прямых промерах размеров крупных кусков кокса [64]. Значение Ки = Кш = 5 мы и примем как наиболее достоверное для частиц второй и третьей групп. [c.57]

    Процесс адсорбции азота является обратимым. Скорости адсорбции и десорбции можно определить по уравнениям  [c.288]

    VII- . При адсорбции азота на активированной порошкообразной окиси алюминия (температура 77,3 °К) получены следующие данные  [c.233]

    Важной характеристикой аммиачного катализатора является способность образовать нитриды, которые должны быть достаточно неустойчивы, чтобы легко реагировать с водородом. Стадией, определяющей скорость реакции, является адсорбция азота, хотя водород и аммиак тоже адсорбируются на поверхности катализатора. Уравнение скорости, общепринятое в настоящее время, приведено в задаче V1I-9.,  [c.325]

    На рис. 29 изображена схема одной из установок для адсорбции азота при температуре жидкого воздуха. Ее важнейшими частями являются калиброванная ампула 1 [c.73]

    Адсорбция молекул, имеющих диполи, квадруполи и л-связи, весьма чувствительна к удалению с поверхности гидроксильных групп. При дегидратации поверхности силикагелей адсорбция воды, спиртов, эфира и других полярных веществ и также азота (молекула азота обладает большим квадрупольным моментом), непредельных и ароматических углеводородов резко уменьшается. На рис. ХУН1, 7 показано уменьшение адсорбции азота и постоянство адсорбции аргона, а также уменьшение теплоты адсорбции пара бензола при дегидратации поверхности силикагеля. [c.500]


    Удельная поверхность по адсорбции азота [c.258]

    Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по изотерме адсорбции азота  [c.69]

    Блок-схема хроматографической установки, используемой для определения удельной поверхности адсорбентов методом тепловой десорбции, представлена на рнс 13. Потоки гелия и азота нз баллонов 1 и 2 подаются в определенном соотношении в смеситель <3, и которого газовая смесь поступает в сравнительную камеру детектора 6 и далее в колонку 8 с исследуемым адсорбентом, в которой прн охлаждении происходит адсорбция азота. Из колонки газоиая смес[1 поступает в измерительную камеру детектора 7. Детектор фиксирует изменение состава газовой смеси в результате адсорбции. Сигнал детектора Iосту-нает на самопишущий потенциометр 5. [c.50]

    Последнее слагаемое вводится в уравнение ( 1,51) потому, что существует возможность адсорбции азота на катализаторе. [c.230]

    Подставив значение 0 из уравнения (VI,197) в уравнение (VI,191), получим скорость адсорбции азота  [c.288]

    На чистом железе 111] в отличие от промотированных железных катализаторов синтез аммиака не лимитируется адсорбцией азота, так как ее скорость значительно больше скорости синтеза. В этом случае синтез аммиака также протекает с участием атомарного азота и лимитируется скоростью диссоциации молекул азота. [c.211]

    Более прост метод, основанный на выделении характерной точки изотермы. При низкотемпературной адсорбции азота, аргона, кислорода или окиси углерода на катализаторах для синтеза аммиака получены характерные З-образные кривые (рис. 3) со средним линейным участком в интервале 60—75 мм рт. ст. Эти линейные участки соответствуют одной и той же величине адсорбции, отвечающей образованию второго адсорбированного слоя [c.41]

    Измерена адсорбция азота на низкодисперсном непористом порошке. Иайдено, что при 77 и 90 К степень заполнения поверхности 0, равная 0,5, достигается при p/ps соответственно 0,02 и 0,2. Пользуясь уравнением БЭТ, рассчитайте изостерическую теплоту адсорбции, а также дифференциальные изменения энтропии и энергии Гиббса адсорбции при 77 К. Теплота испарения жидкого азота нри 77 К составляет 5,66 кДж/моль. [c.72]

    Сведения о текстурных и структурных характеристиках исследованных образцов получены из анализа изотерм адсорбции азота и диоксида углерода, а также методом сканирующей электронной микроскопии. Обнаружено, что при термическом расширении происходит расщепление графитовых пластин на более тонкие слои. Полученные образцы обладают развитой микропористой структурой, представленной в основном щелевидными микропорами с преобладающим размером щелей 0,71-0,92 нм. Суммарный объем микропор составляет 0,114-0,330 см /г и зависит от способа приготовления углеродного материала. [c.122]

    Р и с. 21. Занисимость теплот адсорбции азота на меди от степени заполнения 0. [c.110]

    Поверхность частиц первой группы можно найтк по приближенным геометрическим зависимостям с предварительным обмером линейных размеров частиц по главным осям. Так, Вилли и Грегори [26 определяли размеры сфероидальных частиц с номинальным диаметром 0,279 и 0,127 мм обмером под микроскопом и с помощью проектора, а также методом измерения длин отрезков зерен, пересекаемых бросаемой на шлиф стальной иглой. Результаты измерений усреднялись по данным 200— 600 опытов. Для более мелких частиц с номинальным диаметром 0,028 мм удельную поверхность Оо измеряли по адсорбции азота. Полученные различными методами значения oq совпадали как друг с другом, так и с ао, определенной по перепаду давления из соотношения (П. 55) при Ki = 4,8 с точностью 5%. [c.57]

    В работе [109] была исследована связь проницаемости и активности катализатора, использованного для гидрообессеривания остаточного сырья. Проницаемость оценивалась низкотемпературной адсорбцией азота из потока смеси азота с водородом. Образцы катализатора, проработавшие разное время в процессе гицровбессеривания остаточного сырья, предварительно обрабатывались водородом при 400 °С для удале- [c.136]

    По изменению концентрации азота в смеси в результате адсорбции (.дцсорбционный пик) рассчитывалась степень заполнения поверхности азотом по времени адсорбции. По мере отработки катализатора снижается скорость адсорбции азота (рис. 3.38). Если для 75%-ного заполнения внутренней поверхности свежего образца узкопористого катализатора требуется 1,4 мин, то для образцов, проработавших на остаточном сырье в течение 100, 427 и 1660 ч, требуется 1,95, 2,35 и 3,3 мин соответственно. Скорость адсорбции на катализаторе, характеризующемся более широкопористой структурой, значительно больше, чем на образце катализатора с узкопористой структурой и меньше изменяется при отработке катализатора 75% внутренней поверхности заполняется азотом на свежем широкопористом катализаторе за 0,8 мин, а на проработавшем 8000 ч за 0,95 мин по сравнению с 1,4 мин для свежего узкопористого катализатора. Одновременно в процессе переработки остаточного сырья происходит снижение удельной поверхности и активности катализатора, вызванное отложением кокса и металлов на внутренней поверхности гранул (рис. 3.39). [c.137]


    Выше бы го подробно рассмотрено одно из наиболее важных свойств адсорбента — его избирательная адсорбционная емкость, а та1 жс влияние на нее температуры. Удельная поверхность адсорб( нта, таки е яиляющаяся весьма важным свойством, обычно определяется по мс тоду Брунауэра, Эмметта и Теллера 12], получившему название метода БЭТ. Избирательная адсорбционная емкость адсорбентов для толуола, растворенного в изооктане, изменяется пропорционально удельной поверхности, измеренной но адсорбции азота [40] или бутана [9]. [c.159]

Рис. 20. Изотерма адсорбции азота в координатах линейной формы уравнения БЭТ. Рис, 21. Интегральная кривая распределения пор но радиусам для активного у1ЛЯ. Рис. 20. <a href="/info/143004">Изотерма адсорбции азота</a> в координатах <a href="/info/1532080">линейной формы уравнения</a> БЭТ. Рис, 21. <a href="/info/189892">Интегральная кривая распределения</a> пор но радиусам для активного у1ЛЯ.
    В ряде случаев оптимальные температуры для проведения гетерогенных каталитических реакций совпадают с областью температур, при которых наблюдается активированная адсорбция реагирующих веществ. Например, температуры, при которых ведется процесс синтеза аммиака, совпадают с температурами, при которых наблюдается активированная адсорбция азота. Как показывают опыты с изотопами азота, молекула азота при активированной адсорбции не расщепляется на атомы. Изо-тоииый обмен N2" -N2 ->2N N " на катализаторе синтеза аммиака прн температурах синтеза хотя и идет, но значительно медленнее самого синтеза. Такой обмен может идти только путем разрыва связей в молекулах азота. Но этот процесс медленный, поэтому он не может быть ответственным за более быстрый процесс синтеза аммиака. Следовательно, в реакции син-тезг аммиака атомы азота участия не принимают, скорость же процесса активированной адсорбции азота, не вызывающего диссоциации молекулы азота на атомы, совпадает со скоростью реакции синтеза аммиака. [c.311]

    Очень важным свойством катализаторов является их пористая структура. Ее обычно характеризуют по физической адсорбции и десорбции газов, а также методом ртутной поромет-рии. Для пор размером 20—500 А надежен и весьма полезен метод адсорбции азота. По форме петель гистерезиса адсорбции и десорбции определяют форму и размер пор [34]. Для крупных пор размером 100—150 мкм часто используют ртутную порометрию. Поскольку прилежащий угол между поверхностью ртути и несмачивающимся твердым веществом превышает 90°, ртуть может войти в поры только под давлением. Если известна зависимость объема ртути, который вдавлен в поры катализатора, от приложенного давления, то можно найти распределение пор по размерам. При этом приходится делать некоторые предположения о форме пор, а также считать, что поры выходят на поверхность и не связаны между собой. Микропоры диаметром менее 20 А нельзя надежно измерить никаким методом. Для их изучения рекомендуются молекулярные зонды различных размеров и форм. Таким образом, хотя знание nopH Toff структуры чрезвычайно важно, надежное измерение ее может быть затруднено. [c.31]

    При обработке данных по адсорбции азота на графитироваиной са >ке при 77 К с помощью графика, соответствующего линейному у[)ав-неиню БЭТ, найдено, что тангенс угла наклона прямой составляет [c.69]

    Определяющей стадией процесса является активированная адсорбция азота. Выход аммиака зависит от многих параметров технологического режима температуры, давления, времени соприкосновения газа с катализатором (или обратной величины, называемой объемной скоростью газа), состава газовой смеси, активности катализатора, конструкции аппарата. Есл1 1 система находится в состоянии, не слишком удаленном от равновесия, то скорость процесса на промышленных железных катализаторах можно приближенно рассчитать по уравнению М. И. Темкина  [c.89]

    Величины 5м были рассчитаны из предположен 1я, что молекулы представляют собой сферы, образующие гексагональную упаковку [43]. Было предположено также, что плотность адсорбата на поверхности равна плотности соответствующего жидкого или твердого вещества, взятого при температуре измерения адсорбции [38, 43]. Чаще всего при определении удельной поверхности в качестве адсорбата используется азот, и величина 5м для него принимается равной 16,2 А . В ряде работ [15,48] имеются указания на то, что 5м для азота при— 95 "С может изменяться от 14,5 до 19 А на молекулу на разных поверхностях вследствие различий в ориентации, упаковке и силе взаимодействия с поверхностью. При адсорбции азота, как правило, юлучаются изотермы II типа с крутым изгибом, при этом значения о , рассчитанные с помощью уравнения БЭТ, и значение Vв очень близки. Поэтому азот представляется особенно удобным адсорбатом, позволяющим проводить экспериментальную проверку правильности определения удельной поверхности путем расчета по изотерме адсорбции [37]. [c.295]

    На рис 17 приведены изотермы адсорбции азота и водорода на а1 гивированном угле АГ-2 при 77,4 °К [90]. [c.57]

    Было предложено много механизмов реакции, но вследствие их почти универсальной применимости для проектирования установок здесь рассматривается только механизм, предложенный Темкиным и его сотрудниками. Первое кинетическое уравнение, дающее приемлемое соответствие с наблюдаемыми скоростями, было предложено Темкиным и Пыжовым в 1940 г. [70]. Это уравнение ос-, новывается на предположении, что адсорбция азота на неоднородной поверхности является стадией, определяющей скорость процесса. В результате приходим к хорошо известному в настоящее время уравнению для скорости внутреннего реакционного процесса., протекающего в отсутствии диффузионного торможения  [c.167]

    Хроматографическую колонку с исследуемым адсорбентом помещают в сосуд Дьюара с жидким азотом, продолжая проиускат[ через нее газовую смесь. При охлаждении колонки в результате адсорбции азота и изменения состава газовой смеси г[сро потенциометра начинает отклоняться от нулевой линии. Смещение пера потенциометра происходит до тех пор, пока сорбент полностью не будет насыщен азотом при данной концентрации азота в газовой смеси. Равиовесие считается установленным, когда иеро самописца снова отмечает нулевую линию. Затем сосуд е жидким азотом удаляют, и происходи полная десорбция азота с иоверхности адсорбента ири комнатной температуре. При этом самописеи, вычерчивает кривую десорбции (см. рис. 14). [c.50]

    Используя уравнение БЭТ, рассчитайте удельную пове])хность адсорбента но данным об адсорбции азота  [c.69]

    Приведенные случаи очень часты в гетерогенном катализе, и их применяют для расчетов кажущихся порядков реакции. И. Лэнгмюр показал, что его уравнение изотермы адсорбции хорошо выражает зависимость между величиной адсорбции газа и концентрацией при постоянной температуре. Из этого же уравнения можно путем расчета определить степень покрытия поверхности при максимальной адсорбции. Так, например, для адсорбции азота на слюде при 90° предел адсорбции найден равным 1,4-10 г-мол1см . Грамм-молекула жидкого азота содержит 6,06-10 молекул и занимает объем 35 см . Частное от деления объема 1 г-мол жидкого азота на число Авогадро [c.106]

    В работе исследовали изменение концентрации КФГ при термообработке ШУ (исходного и после обработки кислотой) в восстановительной атмосфере (до 1200 С) в сравнении с двумя типами ТУ (печным и ацетиленовым ф.ВогеаИз) и порошком стеклоуглерода (СУ-2000). Для определения КФГ на поверхности углерода использована сгапдартная методика с помошью титрования щелочными растворами различной основности, для определения удельной поверхности (S ,j) -низкотемпературная адсорбция азота по методу БЭТ. [c.175]

    Сходным образом ведут себя молекулы, у которых распределение зарядов более сложно. В молеку.те углекислоты распределение зарядов носит характер квадруполя. Ленель [36] определил расчетным путем то влияние, которое оказывает на энергию адсорбции взаимодействие квадруполя с поверхностью кристалла галоидной соли щелочного металла, и пришел к выводу, что оно может вызвать увеличение энергии адсорбции прнбл Изительно на 3 ккал/моль. Недавно Дрэйну [37а] удалось получить очень важный результат, который состоит в том, что теплота адсорбции азота на ионных кристаллах во многих случаях оказывается значительно большей, чем теплота адсорбции кислорода и аргона на тех же поверхностях, чего не наблюдается, когда эти газы адсорбируются на поверхностях, не имеющих ионного характера. Как было показано названным автором, аномальное поведение молекул азота обт ясняется наличием у них квадруполей. Мы вернемся к этой проблеме в разделе VI, 2. [c.38]

    Адсорбции аргона, кислорода и азота на хлористом калии посвящено большое число теоретических и экснериментальных исследований [36, 105, 106], В книге Брунауэра по физической адсорбции [17] дан обзор соответствующих работ. Все исследователи, ио-видимому, согласны с тем, что для адсорбированного атома или молекулы наиболее благоприятным является расположение непосредственно над центром элементарной ячейки кристаллической решетки. В этом месте электростатическая поляризация минимальна, а неполярные силы Ваи-дер-Ваальса имеют максимальную величину и играют преобладающую роль [107]. Дрэйн [37а[ обратил внимание на то, что энергия адсорбции азота на ионных поверхностях обычно выше, чем аргона или кислорода, в то время как в случае ненонных поверхностей внергии адсорбции вссх трех газов практически одинаковы. Он приписал этот эффект влиянию квадрупольного момента азота и рассчитал слагаемое энергии адсорбции, появляющееся в результате притяжения квадруполя молекулы азота полем кубической грани кристалла хлористого калия. Согласно этим расчетам, участки поверхности кристалла, расположенные тюносредственно над центром элементарной ячейки, по-прежнему остаются наиболее благоприятными для адсорбции. Найденное значение слагаемого энергии адсорбции, обусловленного притяжением [c.71]

    Родин [173] приготовил три монокристаллическнх образца меди, поверхности которых представляли собой различные кристаллографические грани, и измерил адсорбцию азота на этих гранях прн разных (пониженных) температурах. Полученные им результаты приведены на рис. 24. При рассмотрении [c.110]

    Адсорбция аргона на графите при более высоких заполнениях сходна с огшсанной выше адсорбцией азота на монокри-сталлической меди [39а]. В этом случае вандерва1альсовы силы [c.111]


Смотреть страницы где упоминается термин Адсорбция азота: [c.302]    [c.262]    [c.287]    [c.287]    [c.211]    [c.436]    [c.64]    [c.57]    [c.72]    [c.113]   
Смотреть главы в:

Развитие представлений в области катализа -> Адсорбция азота


Цеолитовые молекулярные сита (1974) -- [ c.18 , c.23 , c.26 , c.51 , c.51 , c.415 , c.446 , c.612 , c.612 , c.616 , c.616 , c.617 , c.617 , c.618 , c.618 , c.619 , c.619 , c.620 , c.620 , c.621 , c.621 , c.622 , c.622 , c.623 , c.623 , c.624 , c.624 , c.625 , c.625 , c.626 , c.626 , c.627 , c.627 , c.628 , c.628 , c.629 , c.629 , c.630 , c.630 , c.631 , c.631 , c.632 , c.632 , c.633 , c.633 , c.634 , c.634 , c.635 , c.635 , c.636 ]

Адсорбция, удельная поверхность, пористость (1970) -- [ c.63 , c.73 , c.83 , c.94 , c.99 , c.103 , c.111 , c.149 , c.150 , c.153 , c.191 , c.192 , c.193 , c.194 , c.195 , c.196 , c.208 , c.259 , c.349 ]

Структура металических катализов (1978) -- [ c.24 , c.25 , c.27 , c.41 , c.335 , c.349 , c.385 , c.390 ]




ПОИСК







© 2025 chem21.info Реклама на сайте