Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Облученность

    Третьей разновидностью печи с экраном двустороннего облучения является многокамерная печь с вертикальными трубами рис. 62). В этой печи форсунки располагаются на различных уров- [c.95]

    Таким образом, двухрядный экран двустороннего облучения работает так же эффективно, как и однорядный экран одностороннего облучения. [c.124]

    Для однорядного экрана двустороннего облучения = 2-0,65>1,3. [c.124]


    Следовательно, наиболее напряженно работает поверхность нагрева однорядного экрана двустороннего облучения. [c.124]

    Принимаем допускаемую тепловую напряженность радиантных труб для печи с двухрядным экраном двустороннего облучения 36 ООО ккал/м ч. [c.136]

    При облучении светом элементов в парообразном состоянии наблюдается обратная картина свет определенных длин волн не излучается, а поглощается. Более того, поскольку как поглощение, так и излучение света обусловлено одними и теми же процессами, протекающими в противоположных направлениях, то пары поглощают излучение с точно теми же длинами волн, какие наблюдаются в других условиях при испускании излучения. [c.102]

    В 30-х годах прошлого века была разработана методика получения изображения с помощью солнечного света, воздействующего-на серебро. На стеклянную пластинку, а позднее на гибкую пленку наносили слой соединений серебра. С помощью системы фокусирующих линз такая пластинка подвергается воздействию света, отраженного от фотографируемого объекта. Даже кратковременное облучение светом вызывает разложение соединения серебра. На разные участки светочувствительного слоя воздействует различное количество световой энергии в зависимости от того, какой отражающей способностью обладают отдельные точки фотографируемого объекта. [c.117]

    Большой интерес ученых вызывали процессы, в которых роль света можно сравнить с действием катализатора. Например, при кратковременном облучении ярким светом смеси хлора с водородом реакция между этими газами протекает со взрывом и практически до конца, тогда как в темноте хлор и водород вообще не реагируют. [c.118]

    Нернст объяснил причины такого влияния света. При облучении смеси светом (даже кратковременном) молекула хлора расщепляется на два одиночных атома. Атом хлора (который намного активнее, чем в составе молекулы) отрывает атом водорода от молекулы водорода и образует молекулу хлорида водорода. Оставшийся атом водорода отрывает атом хлора от молекулы хлора оставшийся атом хлора отрывает- атом водорода от молекулы водорода и т. д. Таким образом, даже незначительное облучение вызывает фотохимическую цепную реакцию, которая протекает со скоростью взрыва и завершается образованием большого количества молекул хлорида водорода. [c.118]


    Физики сразу же заинтересовались этим открытием. Среди тех, кто первым начал изучать рентгеновские лучи, был и французский физик Антуан Анри Беккерель (1852—1908). Он занимался флуоресценцией — свечением, наблюдаемым у ряда веществ после облучения их солнечным светом. Его интересовало, не содержит ли флуоресцентное свечение рентгеновские лучи. [c.152]

    Под термином сульфохлорирование подразумевают совместное и одновременное действие двуокиси серы и хлора на парафиновые углеводороды цри ультрафиолетовом облучении. При этой реакции образуются ароматические сульфохлориды, которые вследствие своей высокой реакционной способности могут вступать в самые различные реакции. Сульфохлорирование представляет собой типичную цепную реакцию. Применение ее для химической переработки парафиновых углеводородов оказалось чрезвычайно плодотворным и работы в этом нанравлении продолжают быстро развиваться. Сульфохлорирование и сульфоокисление ароматических углеводородов в противоположность парафиновым углеводородам оказалось невозможным. Напротив, эти реакции даже подавляются ароматическими углеводородами и могут служить убедительным примером, доказывающим, что в некоторых случаях парафиновые углеводороды обладают даже большей реакционной способностью, чем ароматические. [c.11]

    При реакции сульфоокисления двуокись серы и кислород взаимодействуют с парафиновыми углеводородами нри ультрафиолетовом облучении или в присутствии органических перекисей, образуя алифатические сульфоновые кислоты. Прямое сульфирование парафиновых углеводородов серной кислотой, аналогичное проводимому с ароматическими углеводородами, невозможно. По-видимому, сульфоокисление позволяет преодолеть этот недостаток. [c.11]

    Как известно из термодинамики, для этого требуется около 57 ккал/г-мол. Следовательно, применяемая для облучения световая энергия должна быть не менее энергии диссоциации, равной 57 ккал/г-мол. [c.141]

    Из этих вычислений следует, что для подведения требуемой энергии диссоциации 57 ккал/г-мол применяемый для облучения свет [c.141]

    Эта закономерность, не изменяющаяся ни присутствием катализатора, ни облучением ультрафиолетовым светом, зависит (правда, в ограниченной степени) от температуры и давления реакции (см. главу IX). [c.199]

    А. Устранение хлорирования в углеродной цепи в реакции сульфохлорирования при ультрафиолетовом облучении [c.362]

    Если же процесс сульфохлорирования вести при ультрафиолетовом облучении, то хлорирование в углеродной цепи почти устраняется. Из этих двух конкурирующих друг с другом реакций — сульфохлорирования и хлорирования в углеродной цепи — первая в результате подвода энергии в виде ультрафиолетового света проходит значительно быстрее, чем вторая. [c.362]

    Другим фактором, влияющим на хлорирование в углеродной цепи, является температура. Повышение температуры при сульфохлорировании увеличивает долю хлорирования в углеродной цепи в общей реакции, выдвигаясь на передний план при температуре 100°. Поэтому на практике реакцию проводят по возможности при комнатной температуре (20—30°). При этом сульфохлорирование начинают при 35—40°, а затем работают при 20—25°, отводя тепло реакции и тепло, выделяемое в результате облучения светом ртутных паров, при помощи специально подведенного охлаждения. [c.363]

    При облучении ультрафиолетовым светом чистого сульфохлорида парафинового углеводорода, полученного синтетическим путем, происходит отщепление двуокиси серы с образованием алкилхлорида. В результате осуществляется реакция десульфирования (обессеривание) сульфохлоридов, протекающая аналогично при нагревании  [c.365]

    Алифатические углеводороды можно легко сульфохлорировать сульфурилхлоридом при облучении ультрафиолетовыми лучами, если добавить неорганические катализаторы, такие, как хлор, тионил, хлорид, двуокись серы или сера [29]. Влияние таких добавок показано в табл. 111. [c.372]

    Сульфохлорирование сульфурилхлоридом при облучении ультрафиолетовыми лучами в присутствии неорганических катализаторов [30] [c.372]

    Образование сульфохлоридов газообразных парафиновых углеводородов протекает в газовой фазе взаимодействием углеводорода с хлором и двуокисью серы в стеклянной колбе, облучаемой ультрафиолетовым светом. Но этот способ невыгоден, так как связан с большими потерями хлора вследствие образования непропорционально больших количеств хлористого сульфурила. Гораздо выгоднее проводить сульфохлорирование в конденсированной системе (также при облучении ультрафиолетовым светом) введением этих трех газов в инертный растворитель, например четыреххлористый углерод, что оправдало себя наилучшим образом в лабораторных условиях и в полу-заводском и промышленном масштабе. [c.389]

    В вертикальной иечи, изображенной на рис. 61, а, применение экрана двустороннего облучения сочетается с использованием принципа настильного пламени. Печи этого типа могут быть однокамерными либо многокамерными. Форсунки обычно располагаются под сводом печи, а камера конвекции вынесена вниз. [c.95]


    Разновидностью печи с экраном двустороннего облучения является вертикальная печь с газовылн горелками беспламенного горения, изготовленными из специальных сортов керамики, катализирующих процесс горения. Печь продстанляет собой узкую камеру с экраном двустороннего облучения, в боковых стенах которой установлено большое количество форсунок из керамики (см. рис. 61, б). Такая конструкция печи делает ее гибко1т, так как позволяет регулировать в широких [c.95]

    Указанные типы печей с экранами двустороннего облучения разработаны как типовые. Эти печи особенно подходят для таких процессов, как термический крекинг, пиролиз, коксование, дегрщри-ровапие, где высокие температуры нагрева доллшел сочетаться со сравнительно небольшим временем пребывания продукта в трубах печи, т. е. с коротким змеевиком. Кроме того, эти печи значительно дешевле печей старых типов, поскольку для передачи того и е количества тепла требуется меньший вес металла труб, каркаса и т. д. [c.98]

    Рассмотрим теплоотдачу к экранам двустороннего облучения. Ка кды11 ряд двухрядного экрана двустороннего облучения воспринимает столько тепла, сколько воспринимали бы прямым излучением первый и второй ряды экрана (соответственно 0,05 н 0,21). Следовательно, [c.123]

    После короткого облучения пластинку или пленку обрабатывают раствором химикатов (проявляют) о тем, чтобы восстановить, соединения серебра в светочувствительном елое до металлического серебра. В тех местах пластинки, которые подверглись воздействию более яркого света, восстановление происходит быстрее, поскольку мельчайшие кристаллики металлического серебра, образовавшиеся при действии света, служат зародышами, на которые откладывается дополнительное количество серебра при проявлении. Если вовремя прекратить процесс проявления, то на стеклянной пластинке получится черно-белое изображение (черное — микрокристаллы серебра, белое — невосстановленные соединения серебра), обратное по платности исходному изображению (негатив). Невосстановленные соединения серебра удаляют обработкой в специальном растворе (фиксирование), поскольку они сохраняют свою светочувствительность. Проявленный и отх эиксированный негатив после сушки проецируют на поверхность плотной бумаги, как и пленка покрытой светочувствительным слоем на основе соединений серебра. Последующая обработка фотобумаги, совершенно аналогичная обработке пленки, позволяет получить реальное изображе- [c.117]

    В 1886—1887 гг. Герц, пропуская электрическую искру через воздушный зазор между двумя электродами (так называемый искровой промежуток), обнаружил, что при облучении катода ультрафиолетовым светом искра возникала легче. Это и другие подобные явления, наблюдаемые при освещении металлов светом, как было установлено впоследствии, обусловлены фотоэМктрическим эффектом .  [c.150]

    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    При действи сернистого ангидрида и хлора на парафиновые углеводороды в условиях ультрафиолетового облучения или в присутствии образующих радикалы веществ образуются алифатические сульфохлориды по уравнению [c.133]

    Одновременно с собственно сульфохлорированием, как важнейшая побочная реакция, протекает только одно хлорирование углеродной цепи без одновременного присоединения двуокиси серы. При проведении сульфохлорирования в условиях рассеянного освещения, реакции сульфохлорирования и хлорирования углеродной цепи протекают с практически одинаковой скоростью, так что в молекуле на каждый атом серы приходится приморио двойное количество атомов хлора. Если реакция сульфохлорирования проводится в условиях облучения ультрафиолетовым светом или в присутствии образующих радикалы веществ, как перекиси, тетраэтилсвинец, диазомотап и т. п., хлорирование углеродной цепи приобретает второстепенное значение и практически идет только сульфохлорировашге. [c.137]

    Сульфохлорирование газообразных при нормальных условиях парафиновых углеводородов проводится пропусканием смеси парафинового углеводорода с двуокисью серы и хлором через инертный растворитель, например четыреххлорпстый углерод, при одновременном облучении ультрафиолето- [c.139]

    Углеводороды, используемые в качестве исходного материала для сульфоокисления, делятся на две группы. К первой группе относятся соединения (циклогексан, гентан и др.), которые после инициирования облучением или добавки неркислот продолжают реагировать и в отсутствие этих инициаторов. Вторая группа требует облучения или добавок органиче- [c.142]

    Фотохимическое хлорирование метана до хлористого метила в жидкой фазе, например, в виде раствора в четыреххлористом углероде, протекает по этому способу значительно хуже. Квантовый выход при хлорировании метана ниже, чем при хлорировании хлористого метилена или хлороформа. При хлорировании метана требуется весьм1а интенсивное облучение, в результате чего получается главным образом [c.146]

    Фотохимический процесс можно применять также для хлорирования высокомолекулярных, твердых при нормальных условиях, парафиновых углеводородов, например парафинов нефтяных или синтетических Фишера-—Тропша, а также для хлорирования высокомолекулярного контактного парафина и полиэтилена. Для хлорирования сырья с температурой плавления ниже 70° можно пропускать хлор при облучении ультрафиолетовым светом в расплав или растворяя исходное сырье в четыреххлористом углероде. Так, например, хлорированием 3%-ного раствора полиэтилена в четыреххлористом углероде можно получать продукт, содержащий 73% хлора, имеющий температуру размягчения выше 200° и разлагающийся выше 230°. [c.148]

    Бромированные парафиновые углеводороды, которые не могут быть получены прямым бромированием, возможно получать присоединением четырехбромистого углерода или бромоформа к олефиновым углеродам в присутствии органических перекисей. Так, например, из 1-октена и четырехбромистого углерода в присутствии перекиси бензоила или при облучении кварцевой лампой получают высокие выходы 1,1,1,3-тетра-бромнонана (температура кипения прн 0,02 мм рт. ст. 127°). [c.200]

    При бромировании нитропарафннов в отсутствие оснований, но в присутстви пятиокиси фофсора и при облучении ультрафиолетовым светом получаются те же продукты (как показали Райли и Мак-Би [25]), что и в присутствии щелочей. [c.272]

    Под сульфохлориро ванием понимают оавместиое действие двуокиси серы и хлора на насыщенные алифатические углеводороды при облучении ультрафиолетовыми лучами. [c.356]

    Согласно этим выводам являетоя несомненным, что определенная часть сульфохлорида, образованная при совместном действии хлора и двуокиси серы на парафиновые углеводороды при ультрафиолетовом облучении, снова под действием света десульфируется в алкилхлорид по приведенному выше уравнению. [c.365]

    Так как при этой операции хлор в углеродной цепи почти не омыляется, то аналитически можно установить, какой процент всего связанного с углеродом хлора содержался в виде хлористого алкила и какой в виде хлорсульфохлорида. При незначительном хлорировании в углеродной цепи, как при сульфохлорировании н-парафинов при облучении ультрафиолетовыми лучами, можно считать, что в хлористо.м алкиле хлор содержится главным образом в виде алкилмонохлорида. [c.376]

    На ряс. 65 изображена лабораторная установка для сульфохлорирования жидких и газообразных углеводородов. Она состоит из кварцевой трубки, в которую вставлены охлаждающий змеевик, трубки для входа и выхода газа, а также термометр. Трубка для входа газа имеет на нижнем конце впаянный стеклянный фильтр для более равномерного распределения газа. Облучение пр0В0 ДИтся расположенной снаружи ртутн0-кварцевой лампой. Процесс периодический и позволяет сульфохлорировать небольшие количества углеводорода. В этой же аппаратуре М ожно с успехом сульфохлорировать жи1дкие углеводороды. [c.391]


Смотреть страницы где упоминается термин Облученность: [c.92]    [c.93]    [c.95]    [c.138]    [c.138]    [c.140]    [c.144]    [c.148]    [c.259]    [c.366]   
Фотосинтез (1972) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

облучение



© 2025 chem21.info Реклама на сайте