Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Компонент ограничение на степень превращения

    Оба эти метода дают возможность выявить основные различия в активности, связанные со значительными изменениями какого-либо одного параметра (химического состава, структурных свойств и т. д.), если остальные параметры остаются без изменения. Вместе с тем сложной взаимосвязи между процессами сорбции, диффузии и, химической реакцией они не отражают. Более надежным способом, позволяющим избежать неправильных выводов при сравнении катализаторов с нестабильной во времени активностью, является экстраполяция конверсии на нулевое время. Этот метод обычно используют в тех случаях, когда реакция проводится в дифференциальном, а не интегральном реакторе. Однако, как правило, применяется он значительно реже, хотя известно, к какой путанице может привести, например, определение влияния соотношения Si/Al на каталитические свойства деалюминированного морденита, если однозначный способ определения активности отсутствует. Еще меньше можно назвать работ, в которых были проведены кинетические определения зависимости констант скоростей от скорости подачи сырья или парциальных давлений исходных компонентов -й продуктов реакции. Между тем, сравнивая активности, часто дйпускают, что реакции имеют первый порядок, и пересчитывают измеренные степени превращения в константы скорости. Принято также определять температурную зависимость активности и подставлять данные по конверсии при различных температурах в уравнение Аррениуса. Такой расчет будет правильным, если используются только начальные конверсии, потому что в этом случае можно избежать неточностей из-за разной скорости дезактивации катализаторов при различных температурах. Но даже и тогда расчет энергии активации совсем не обязательно приведет к Д,, характерной для данной химической реакции, которая протекает на определенном типе активных центров. Полученная величина Еа может в значительной степени отражать ограничения, связанные с диффузией и массопередачей. [c.56]


    Ведущим компонентом процесса выбираем аммиак с ограничением на его степень превращения [c.224]

    Ведущим компонентом будем считать СгНзОН при ограничении на его степень превращения  [c.226]

    Участие компонентов среды в качестве реагентов в реакциях электрофильного или нуклеофильного замещения функциональных групп ионита, естественно, приведет к тому, что скорость этих процессов станет различной и будет зависеть от активности реагента в этих реакциях. Количественная оценка роли среды в процессах замещения функциональных групп возможна только в тех случаях, когда определены константы скорости реакций. Если в результате каталитических превращений самой среды при нагревании в присутствии ионита происходит изменение ее состава, то при оценке ее роли в процессе замещения функциональных групп необходимо учитывать истинный состав сорбированного раствора, а на его первоначальное состояние. Например, при нагревании сульфокатионитов в спиртах вследствие дегидратации спиртов в фазе ионнта фактически образуется водно-спиртово-эфирно-олефиновая смесь, и в этом случае нельзя говорить о стойкости катионита в спиртах, так как в реакциях электрофильного замещения сульфогрупп помимо молекул спирта принимают участие вода, простой эфир и олефин в соответствии с их реакционной способностью и мольной долей в составе сольватных оболочек противоионов. Поэтому при проведении опытов в статических условиях с ограниченным количеством органического растворителя трудно получить объективную информацию о влиянии природы среды на стойкость функциональных групп в реакциях электрофильного и нуклеофильного замещения. Для получения такой информации опыты необходимо проводить в динамических условиях (при каталитических превращениях самой среды) или в большом избытке внешнего растворителя (при минимальной степени превращения среды). Поэтому выводы о влиянии природы органической среды на стойкость сульфокатионитов, приведенные в работах [7, 12, 14, 180, 201—203, 205, 225, 226, 237], [c.182]

    Наиболее эффективно реакция протекает при 130° С [21]. При этой температуре она может протекать с примерно 80 % -ным превращением сырья при однократном пропускании через реактор. Этот предел степени превращения установлен, исходя из реальных возможностей с учетом термодинамических ограничений. Применение рециркуляции непрореагировавшего сырья позволит обойти это ограничение и даст возможность достигнуть стопроцентного превращения реагирующих веществ. При этом в реакционной зоне можно иметь различное соотношение реагирующих компонентов. [c.285]

    Следует отметить, что селективность процесса зависит также от соотношения концентраций компонентов >1 и fi на поверхности зерна и поэтому будет меняться с глубиной протекания реакции. Для процесса с последовательной схемой превращения в слое катализатора характерно (рис. 2.28) экстремальное изменение концентрации промежуточного продукта R, уменьшение интегральной S и дифференциальной S" селективностей (S, S - соотношение соответственно выходов и скоростей образования R и всех продуктов). Поэтому в качестве критерия оптимальности пористой структуры катализатора целесообразно использовать максимальную интенсивность процесса с ограничением на интегральную селективность при заданной степени превращения или максимальный выход промежуточного продукта R. В любом случае влияние внутридиффузионного торможения однозначно определяется параметром ф1, который зависит от выбранного типа ограничения (на дифференциальную или интегральную селективность или максимальный выход). [c.78]


    Повыщение температуры обуславливает интенсификацию процесса (увеличение скорости) для необратимой реакции. При необходимости достижения максимальной интенсивности температуру следует увеличить до максимума, допустимого для данной реакционной системы (при любых концентрациях и, соответственно, степенях превращения). Ограничение температуры вызвано термостойкостью компонентов, появлением нежелательных реакций, возможностью самовоспламенения, устойчивостью материала аппаратуры и тд. [c.99]

    Математическое описание работы реактора включает уравнения кинетики, систему уравнений материального баланса по компонентам, зависимость времени пребывания I) от объема аппарата (V) и объемной скорости потока, а также ограничение на степень превращения вещества В. [c.177]

    Хотя Вейсс ввел произвольные ограничения для ряда совместных дифференциальных уравнений (102) — (104), обычный порядок величины критерия (142) является пригодным. Это было продемонстрировано на примере превращения / .-гептана в изомерные гептаны в присутствии спрессованного платино-алюмосиликатного. катализатора. Размер частиц компонентов этого катализатора колебался в пределах от 1000 до 5 мк, и было показано, что для более мелких частиц степень превращения достигает степени превращения, наблюдаемой в случае алюмосиликатного катализатора, с непосредственно нанесенной на него платиной. Основной критерий показывает также чтобы достичь 90%-ной степени превращения от равновесного, сле- [c.307]

    М. Ф. Нагиевым и А. Н. Плановским [84 107] доказана эффективность проведения химических процессов при невысоких степенях превращения благодаря достижению более высоких скоростей реакции. Показано, что независимо от наличия термодинамических и кинетических ограничений можно максимально использовать сырье вследствие смещения равновесия реакции в сторону образования конечных продуктов при постоянном увеличении концентрации исходных компонентов в зоне реакции, которое обеспечивает рециркуляция непревращенного сырья. При этом разделение реакционной смеси осуществляют в автономном аппарате вне зоны реакции, т. е. обеспечивают внешний рециркуляционный контур. Высокая экономическая эффектив- [c.25]

    Предпосылки, использованные при выводе моделей Яндера и анти-Яндера, очевидно, могут выполняться только в ограниченном интервале времени протекания твердофазной реакции. В начальный период реакции частицы продукта не могут образовывать сплошного слоя на частицах исходной фазы, а присутствуют в виде отдельных ядер. Тогда как в течение завершающего периода реакции из-за значительного уменьшения радиуса кривизны частиц компонента А оказываются неприменимыми уравнения кинетики роста плоского слоя (5.48) и (5.49). В результате согласно данным многих исследователей уравнения (5.54)—(5.61) (кроме уравнений (5.56) и (5.59)) применимы для степеней превращения а = 0,1 —0,4, что явилось причиной многочисленных модификаций модели Яндера. [c.212]

    Передача цепи возможна на все компоненты реакционной системы - мономер, инициатор, растворитель и полимер. При полимеризации до малых степеней превращения (конверсий) мономера в полимер реакцией передачи цепи на полимер обычно пренебрегают. С учетом реакций передачи цепи средняя степень полимеризации равна отношению скорости роста к сумме скоростей всех реакций ограничения материальной цепи, включая бимолекулярный обрыв. Для дальнейших выводов удобнее использовать величину, обратную степени полимеризации  [c.195]

    Известно, что реакция гидрогенолиза серусодержащих соединений с близкой реакционной способностью протекает по механизму реакции первого порядка в ограниченном интервале степеней превращения [38]. В связи с тем, что нефтяные остатки включают широкий спектр компонентов с различной реакционной способностью, при анализе экспериментальных данных по удалению серы наблюдается увеличение кажущегося порядка реакции. Как видно из табл. 2.3, кажущийся порядок реакции может варьироваться от первого до и-го. По данным [56, 38,48] наиболее достоверной качественной интерпретацией процесса, сложность кинетики которого определяется различием в скоростях превращения различных классов серусодержащих соединений, является модель с представлением реакции удаления серы в виде превращения ее из двух условных групп компонентов (легко- и трудноудапяемой) [см. уравнения (2.1), (2.2), (2.3) табл. 2.2]. [c.71]

    Для полимеров нехарактерно полное превращение реагирующих функциональных групп, которое определяется не только стехиометрией реакции, но и наличием макромолекул как кинетических единиц. В процессе химических реакций в полимерных цепях лишь часть функциональных групп участвует в той или иной реакции, а другая часть остается неизменной вследствие трудности доступа реагента к функциональным группам, например внутри свернутой макромолекулы, или вследствие наличия каких-либо видов надмолекулярной организации в полимерах, нли в результате малой подвижности сегментов макромолекул в массе, в растворе и т. д. При этом должно соблюдаться условие, чтобы скорости диффузии реагирующих компонентов не являлись лимитирующим фактором, т. е. скорость химической реакции не должна контролироваться диффузией и скоростью растворения реагирующих веществ. Речь идет, таким образом, о влиянии чисто полимерной природы вещества на характер химических реакций и степень превращения компонентов. В любой макромолекуле полимера после химической реакции всегда присутствуют химически измененные и неизмененные звенья, т. е. макромолекула, а следовательно, и полимер в целом характеризуются так называемой композиционной неоднородностью. Она оценивается по двум показателям неоднородность всего состава в общем, т. е. композиционный состав конечного продукта (процент прореагировавших функциональных групп) и неоднородность распределения прореагировавших групп по длине макромолекуляриых цепей. Неоднородность может иметь различный характер сочетания одинаковых звеньев измененных и неизмененных функциональных групп статистическое их распределение по длине цени с ограниченной протяженностью (диады, триады, т. е. два, три одинаковых звена подряд) или более протяженные типа блоков в блок-сополимерах (см. ч. Г). Малые по длине участки одинаковых звеньев могут быть расположены вдоль цепи тоже статистически или регулярно и таким образом композиционная неоднородность полимеров после каких-либо химических реакций имеет достаточно широкий спектр показателей, которым она характеризуется. [c.216]


    Согласно, Гордону [17], любой процесс.формирования сетки может быть разбит йа три Ьтадии первая протекает без каких-либо диффузионных ограничений вторая — с селективным диффузионным контролем для некоторых из компонентов системы третья — с диффузионными ограничениями для всех протекающих в системе реакций. Первая стадия связана С такими глубинами превращения, когда в системе еще отсутствуют следы геля и микрогеля. На второй стадии причиной диффузионных затруднений могут явиться топологические ограничения, вызывающие полную или частичную потерю трансляционной подвижности цепей сетки и связанных с ними реакционных центров.. Диффузионное торможение реакции при глубоких степенях превращения (третья стадия) связано не только с топологическими ограничениями, но и с переходом системы в стеклообразное состояние. В этом случае решающее значение имеет вопрос о локальной подвижности реакционноснособных функциональных групп однако задача о связи релаксационных процессов в твердой полимерной матрице и кинетики химических реакций остается в настоящее время нерешенной. [c.11]

    Для получения олигомеров используют как общепринятые методь синтеза полимеров с применением способов ограничения роста цепи, так и специфические, специально разработанные методы. При реакциях полимеризации ограничение роста осуществляют введением агентов передачи цепи, увеличением концентрации инициатора или катализатора. При поликонденсации рост цепи ограничивают прекращением реакции при низких степенях превращения, исиользо-ваниел избытка одного из компонентов или введением монофункциональных соединений, блокирующих определенные реагирующие функциональные группы. Описаны методы получения олигомеров деструкцией высокополимеров и др. Олигомеры, синтезированные этими методами, характеризуется различным молекулярно-весовым распределением. [c.255]

    Механосинтез в твердых дисперсиях полимеров в мономерах, йапример замороженных, является разновидностью твердофазной полимеризации и отличается чрезвычайно высокими скоростями и высокой, практически близкой к 100% степенью превращения компонентов. При этом здесь нет ограничений, типичных для других методов, иапример иет еобходи.мости в абухаиии полимера в мономере, во введении мономера в количествах, обеспечивающих отсутствие текучести, и т. д. [c.292]

    Полнота замещения функциональных групп при полимеранало-гичном превращении зависит главным образом от растворимости полимера. Если полимер линеен и реакция осуществляется в достаточно разбавленном растворе, то скорость реакции замещения близка к скорости взаимодействия аналогичных низкомолекулярных соединений. При этом полнота замещения в мономерных звеньях максимальна. Если же раствор имеет сравнительно высокую концентрацию, скорость взаимодействия и степень превращения снижаются. Полимеры, имеющие разветвленную и сетчатую структуру и способные только к ограниченному набуханию, взаимодействуют с низкомолекулярным компонентом реакции в результате диффузии его в набухшую массу полимера. Чем больше в полимере межмолекулярных связей, чем более структурирован полимер, тем меньше он набухает, тем медленнее диффундирует низкомолекулярный продукт, тем ниже скорость реакции и тем меньше полнота замещения. [c.263]


Смотреть страницы где упоминается термин Компонент ограничение на степень превращения: [c.451]    [c.224]    [c.354]    [c.138]    [c.451]    [c.157]    [c.73]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.224 ]




ПОИСК





Смотрите так же термины и статьи:

Компонент степень превращения

Ограничение на превращение компонентов

Ограничение на степень превращения

Степень превращения

Степень превращения и степень превращения



© 2025 chem21.info Реклама на сайте