Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Асимметрия элементы

    Укрупнение структурных элементов идет по длине. Длина элементарной фибриллы - около 30 нм, а макрофибриллы -2-3 мкм. Видимые в электронном микроскопе надмолекулярные структуры целлюлозы представляют собой частицы со степенью асимметрии 1 10 - 1 15. [c.156]

    Асимметрический атом углерода — главная, но не единственная причина оптической активности органических веществ. Асимметрическими могут быть и атомы других элементов — кремния, азота, фосфора, мышьяка, серы и др. Оптическая активность может появиться и без асимметрического атома, за счет асимметрии всей молекулы в целом (молекулярная асимметрия). В комплексных соединениях асимметрия часто возникает в октаэдрической пространственной структуре. [c.42]


    Уже давно стало очевидным, что недостаточно рассматривать функции мембран живых клеток с точки зрения химических свойств компонентов, их составляющих, — требуется учитывать не только их физико-химические и электрохимические характеристики, но и пространственную организацию этих компонентов асимметрию элементов и жидкокристаллическое состояние липидов. Липиды отличаются от трех других основных групп веществ, составляющих живые организмы (белки, углеводы, нуклеиновые кислоты), тем, что не растворяются в водных средах. Эти светло-желтые пастообразные вещества хорошо растворяются в липидных растворителях — хлороформе, диэтиловом эфире, бензоле. Классификация разделяет липиды на несколько групп, из которых в состав плазматических мембран входят фосфолипиды и стерины, тогда как триглицериды (жиры) располагаются, как правило, в межклеточном пространстве. [c.107]

    ДИАСТЕРЕОМЕРЫ (диастереоизомеры) — оптические изомеры, отличающиеся друг от друга конфигурацией двух (или более) элементов асимметрии и в то же время не являющиеся зеркальным отображением друг друга. В отличие от антиподов оптических Д. обладают различными физическими и химическими свойствами. Например, О-вин-ная и мезовинная кислоты. [c.87]

    Здесь начальный момент нулевого порядка Мо соответствует общему количеству введенного в поток индикатора. Начальный момент Мю определяет среднее время пребывания потока в аппарате ЛГю=г. Центральный момент второго порядка Ма характеризует дисперсию или разброс элементов потока по времени пребывания в аппарате относительно среднего значения Ма=о2. Центральный момент третьего порядка определяет асимметрию функции распределения Мд=р. . Момент характеризует островершинность или крутость кривой распределения и т. д. [c.335]

    Наряду с энергией связи и стабильностью ядер больщое значение в химических процессах имеют также магнитный и электрический моменты ядра. Спин ядра складывается из спинов нуклонов С/2Й) таким образом, что составляет четное или нечетное число, кратное исходному спину /гй. Поэтому спин ядра может для разных элементов меняться от О до 4,5. Он проявляется в сверхтонкой структуре атомных спектров и является основой метода ядерного магнитного резонанса. Так называемый квадрупольный момент ядра Q отражает асимметрию распределения заряда в ядре. Он особенно важен при взаимодействии между неполярными молекулами (например, молекулами СОг в газовой фазе). Q дает также информацию об отклонении ядра от сферической формы. [c.35]


    Наиболее важной характеристикой полярной связи является степень асимметрии расположения электронной пары. Она определяется в первую очередь различием в электроотрицательности элементов. Чем больше это различие, тем менее симметрично располагается электронное облако и тем полярнее образованная им связь. Легко видеть, что полярность связи между двумя атомами двух данных элементов зависит и от валентного состояния так, например, в различных окислах серы (SO2, SO3 и др.) она будет неодинаковой. Полярность. Связи между двумя данными атомами в известной степени зависит и от того, с какими другими атомами они связаны. Это объясняется влиянием на них других атомов, содержащихся в молекуле. [c.64]

    В общем случае следует отличать полярность молекулы в целом от полярности отдельных содержащихся в пей связей. Для двухатомных молекул эти два понятия совпадают. Анализируя имеющийся опытный материал, можно установить, что двухатомные молекулы, состоящие из одинаковых атомов в соответствии с вполне симметричным положением связывающей их электронной пары, не обладают полярностью, и для них [х = 0. Двухатомные молекулы, состоящие из неодинаковых атомов, в большинстве случаев являются в той илн иной степени полярными. В общем, чем больше различие в электроотрицательности элементов и чем, следовательно, более асимметричным является распределение электронной пары, связывающей данные атомы, тем больше будет и полярность связи. Наибольшей величины, при прочих равных условиях, она должна достигать при чисто ионной связи. Впрочем, строго говоря, между асимметрией в распределении электронной пары и дипольным моментом однозначной зависимости может и не быть, так как асимметрия эта определяет собой только величину заряда атомов в данной молекуле, а дипольный момент зависит еще и от расстояния между ними. [c.78]

    При условии, что рН(1) = рН(Н) э. д. с. элемента должна быть равной нулю, однако особенностью стеклянного электрода является его потенциал асимметрии Сас, т. е. при равенстве pH двух растворов э. д. с. стеклянного электрода не равна нулю. Это связано с наличием двух разных потенциалов на внешней и внутренней стенке стеклянного шарика, что объясняется различием в свойствах внутренней и внешней поверхности стеклянного электрода. Потенциал асимметрии зависит от состава и толщины стекла электрода. Чем тоньше стенки электрода и выше его электропроводность, тем меньше потенциал асимметрии (5—10 мв). [c.296]

    В реакторах с довольно сложной конструкцией топливных элементов, при которой возможна асимметрия, распределение потока в каждом канале, очевидно, не будет равномерным. Например, в электрически обогреваемой полномасштабной сборке топливных элементов экспериментального реактора с газовым охлаждением, изображенной на рис. 6.27, наблюдаются большие колебания местной температуры газового потока и температуры поверхности топливного элемента, обусловленные асимметрией. На рис. 6.28 показано распределение скорости, преобладающее в типичном сечении Ц71. Проблемы перегрева в реакторе с газовым охлаждением гораздо сложнее, чем в реакторах с водяным охлаждением, так как в последнем случае допустимо кипение с недогревом. В реакторах с газовым охлаждением или с охлаждением органическими жидкостями нельзя ожидать каких-либо благоприятных эффектов связанных с кипением. [c.136]

    Настроить усилитель. Для этого с помощью реостата установить стрелку прибора в нулевое положение. Настроить потенциометрическую цепь по нормальному элементу. Для этого ключ Яг переключить в верхнее положение. Одновременно с помощью реостата Яю установить стрелку нуль индикатора в нулевое положение. Вращая ручку реохорда установить его на известную величину pH буферного раствора. Нажав кнопку Ки вращать с помощью ручки установка нуля реостат асимметрии стеклянного электрода до установления стрелки нуль индикатора в нулевое положение. [c.64]

    Параметры асимметрии Рг, входящие в Г1,2, для разных уровней и элементов табулированы в специальной литературе (как и значения Ст ) угол 0 бывает известен (обычно равен 90°) можно оценить (см. ниже), т. е. 71,2 может быть рассчитано. [c.146]

    Пространственная изомерия. Наиболее типична оптическая изомерия, которая возникает вследствие асимметрии молекул, состоящих из атомов элементов с различной электроотрицательностью. Изомеры отличаются только расположением атомов в пространстве и один изомер является зеркальным изображением другого. Химические и [c.252]

    Как видим, сталь 45 характеризуется достаточно высокой стабильностью химического состава. Распределение содержания всех основных элементов в стали хорошо согласуется с законом нормального распределения. Распределение других элементов (медь, хром, никель) близко к нормальному и имеет правую асимметрию [145]. Отклонения от нормального распределения для данных элементов объясняются, вероятно, особенностями поставляемой руды. Асимметрия любого явления, как известно, появляется в результате преобладания одного (или нескольких) какого-либо фактора. [c.153]

    Более четверти века назад Шубников [41] отметил, что в литературе часто наблюдается путаница при употреблении терминов асимметрия и диссимметрия . К сожалению, такая путаница пока еще продолжает существовать. Шубников правильно отметил, что научный смысл этих терминов целиком согласуется с грамматикой этих слов асимметрия означает отсутствие симметрии, а диссимметрия - расстройство симметрии. Термин диссимметрия впервые был использован Пастером для обозначения отсутствия в фигуре элементов симметрии второго рода. В соответствии с этим диссимметрия не исключает присутствия [c.74]


    Пример симметрии С , т,е, отсутствие элементов симметрии, за исключением поворотной оси первого порядка (симметрия С -это асимметрия). [c.103]

    Вещества, проявляющие круговое двулучепреломление и круговой дихроизм, называют оптически активными. Их можно разделить на два класса один, в котором оптическая активность обнаружена только у кристаллов, например кварц, и другой, в котором оптическая активность проявляется в твердом, газообразном и жидком состояниях чистого вещества или в растворах. В веществах первого класса оптическая активность обусловлена правой или левой спиральными структурами в кристалле и исчезает при его плавлении. Оптическая активность веществ второго класса связана с асимметрией самой молекулы. Для молекулы, зеркальное изображение которой не совмещается с ней самой, лево- и правополяризованный свет имеет разные показатели преломления и соответственно различные коэффициенты поглощения. Это может быть любая молекула, обладающая только элементами симметрии собственного вращения (разд. 13.11). Молекула, имеющая ось несобственного вращения (5п), включая зеркальную плоскость или центр симметрии, не может быть оптически активной. [c.486]

    Если пренебречь асимметрией пары оснований, то можно заметить, что в составе двойной спирали одна нуклеотидная цепь связана с другой осью симметрии 2-го порядка. Этот элемент симметрии, порождаемый антипараллельным расположением цепей, делает молекулу ДНК с обоих концов одинаковой—как с точки зрения человека, рассматривающего модель, так и с точки зрения фермента, вступающего с молекулой во взаимодействие. В действительности две цепи не идентичны, а генетическая информация может считываться с тех участков, которые располагаются на поверхности в районе большой бороздки (рис. 2-23,Л). [c.133]

    Центробежный насос является генератором гидродинамического и воздушного шума. Источниками гидродинамического шума собственно насоса без привода являются прежде всего процессы, связанные с обтеканием его элементов образование вихрей на лопатках и дисках, на стенках корпуса и в выходном патрубке, приводящее к возникновению вихревого шума образование пограничного слоя на стенках проточной части насоса, приводящее к появлению шума, аналогичного вихревому неоднородность потока вследствие конечности числа лопаток и асимметрии корпуса. Весьма значительным источником шума являются кавитационные процессы. Наличие вращающихся деталей приводит к шуму из-за дисбаланса. [c.301]

    Характеристики катарометров. Симметрия ячеек. На практике оказалось, что при работе со сдвоенными катаро.меграми обнаруживается значительная асимметрия элементов. Даже при большой тщательности выбора нитей (при коаксиальном их монтаже и т. д.) нельзя рассчитывать на полную идентичность двух каналов. Присущая прибору асимметрия проявляется различны.м образом, [c.146]

    В маслах и смазках поверхностно-активными элементами, образующими граничный слой, являются полярные молекулы с отчетливо выраженной ассимметричной структурой. Полярными группами в молекуле являются ОН СООН Г 1Нг, N02 или атомы О, 8, N. С1 и др. Поверхностная активность молекулы зависит от величины ее дипольного момента, характеризующего асимметрию распределения положительных и отрицательных электрических зарядов в молекуле и относительных размеров полярных групп и неполярной части молекулы. [c.133]

    Характеристикам ребер и теплоносителей, омывающих ребра, присвоим соответственно индексы 1 и 2. Температура теплоносителя вдоль ребра 1 понижается с до изменяется также коэффициент теплоотдачи аор1 от теплоносителя к отложениям на ребре. Это является причиной асимметрии кривой изменения температур относительно оси ребристого элемента. Температуры кромки /кр1 посредине /р[ и у основания 1° ребра 1, температура отложений на ребре / р1 в нижней части ребристого элемента [c.68]

    Неподвижные элементы проточной части ступени должны выполнять две основные функции изменение направления потоков и превращение динамического напора в энергию статического давления. Выполнение этих двух функций предъявляет особые требования к аэродинамическим качествам каналов. Воздействие находящихся поблизости вращающихся каналов рабочего колеса, наличие косых срезов на входных и на выходных участках, а также влияние осевой асимметрии спиральной камеры (в случае концевой ступени) создают условия, значительно более сложные, чем в обычных диффузорных каналах. В связи с этим аэродинамика невращающнхся каналов центробежной компрессорной машины представляет собой предмет специальных исследований. [c.168]

    Кроме структурной известна также пространственная изомерия, возникак -1лая вследствие асимметрии молекул, содержащих атомы различных элементов. Такие изомеры отличаются друг от друга расположением атомов в пространстве, в снязи с че.м различные изомеры янляготся зеркальным изображением лруг друга. Физические и. химические свойства иространстве шых изомеров од-)юго соединения одинаковы. [c.139]

    Следующий этап исследований — изучение потенциалов фильтрации углеводородных жидкостей. Исследования проводили на специальной установке. Основной ее элемент — измерительная ячейка, в которой находились образцы естественных кернов в виде цилиндров диаметром 0,03 м и длиной 0,04 м. Для измерений потенциалов использовали хлорсеребряные электроды диа метром 0,002 м, которые помещались в измерительную ячейку В процессе фильтрации создавались перепады давления в жидкости и наружного давления на керн. Потенциал регистрировали высокоомным потенциометром, а в качестве индикатора нуля использовали микроамперметр. Исследования проводили на экстрагированных образцах керна Арланского месторождения с проницаемостью 0,149 мкм (по воздуху) и пористостью 25,3 %. Методика измерения потенциалов фильтрации заключалась в следующем. Перед проведением экспериментов образец насыщали исследуемой жидкостью и при атмосферном давлении определяли потенциал асимметрии, который в опытах был равен 3 мВ. Результаты предварительных исследований показали практическую независимость потенциала фильтрации от нагрева ячейки на 3— 4 К, вызванного длительной работой электромагнита. Эксперименты проводились на модельных углеводородных жидкостях при различных скоростях фильтрации. При этом перепады давления составляли от 0,35 до 0,45 МПа. В процессе эксперимента заме-рялось количество отфилътровавщейся жидкости, а время фильтрации фиксировалось по секундомеру. Каждый эксперимент повторяли три раза. Полученные результаты для двух значений линейных скоростей фильтрации приведены на рис. 22. Эти результаты сравнивались с теоретической зависимостью, рассчитанной по формуле (4.6) при = 0,3 В. Как видно из рисунка, расчетные и экспериментальные данные совпадают, что свидетельствует о справедливости зависимости Гельмгольца—Кройта для принятых условий фильтрации полярных углеводородных жидкостей. [c.123]

    Изменение условий формирования дисперсной фазы - Создание стерических затруднений для роста надмолекулярных образований. - Формирование структурных образований неправильной формы, отличающихся сильной асимметрией. - Амморфизация структурных образований. - Формирование в системе структурных элементов мозаичного строения в виде дендритов, друз, других подобных разветвлений надмолекулярных комплексов Депрессоры. полимеры, деэмульгаторы, ПАВ [c.250]

    Дипольный момент молекул. Представим себе, что можно найти центры тяжести отрицательных и положительных частей молекулы. Тогда условно все вещества можно разбить на две группы. Одну группу составляют те, в молекулах которых оба центра тяжести совпадают. Такие молекулы называют неполярными. К iiHM относятся все ковалентные двухатомные молекулы вида Al, а также молекулы, состоящие из трех и более атомов, имеющие высохосимметричное строение, например СОз, Sj, U, СбНб. Во вторую группу входят все вещества, у которых центры тяжести зарядов в молекуле не совпадают, молекулы которых характеризуются электрической асимметрией. Эти молекулы называют полярными. К ним относятся молекулы вида АВ, в которых элементы А и В имеют различную электроотрицательность, и многие более сложные молекулы. Систему из двух разноименных электрических зарядов, равных по абсолютной величине, называют диполем. [c.74]

    Эффективные заряды. При образовании химической связи электронная плотность у атомов меняется. Так, при связывании двух атомов элементов, имеющих различные электроотрицательности, атом более электроотрицательного элемента притягивает электроны сильнее, чем атом менее электроотрицательного элемента. В результате электронная плотность в молекуле распределяется вдоль химической связи асимметрично. Изменение электронной плотности у атома, связанного в молекуле, можно учесть, приписав атому некоторый эффективный заряд 6 (в единицах заряда электрона). Эффективные заряды, характеризующие асимметрию электронного облака, условны, так как электронное облако делокализоваио и его нельзя разделить между ядрами. [c.77]

    Оптически активные структуры с осями симметрии называют хиральными. Этот термин происходит от греческого хирос — рука правая и левая руки являются наглядным примером зеркальности (впрочем, при полном отсутствии всяких элементов симметрии и поэтому по сути являются примером асимметрии, а не хиральности). [c.75]

    Одним элементом хиральности здесь является остаток оптически активного а-нафтилэтиламина с обыкновенной углеродной асимметрией. Второй элемент хиральности возникает в результате затрудненного вращения вокруг оси хиральности 8—Ы барьер вращения составляет около 80 кДж/моль [36]. [c.617]

    С помощью РЭ-спектров точно устанавливаются энергии НМО внутренних электронов, следовательно, определяется порядок заселения этих орбиталей, имеющих очень важное значение при правильном построении энергетических диаграмм молекул. Кроме того, РЭ-спектроскопия, как и рентгеновская спектроскопия, дает возможность исследовать степень ионности ковалентной связи. Образование химической связи между неодинаковыми атомами приводит к асимметрии результирующего электронного облака, которая изменяет эффективные заряды атомных остовов, в результате чего происходит сдвиг энергий АО. Только в методе РЭ-спектро-скопип энергетические сдвиги внутренних АО изучаются по Ь кин, испускаемых исследуемым веществом электронов. В табл. 16 приведены сдвиги энергий АО для кремния, алюминия, углерода и фосфора в некоторых твердых соединениях этих элементов по данным РЭ-спектроскопии. Положительные сдвиги соответствуют возникновению положительного эффективного заряда на атомах элемента, а сдвиги с отрицательным знаком (в сторону уменьшения энергии) свидетельствуют возникновению отрицательного эффективного заряда. [c.185]

    Построение характерного для большинства моносахаридов прямого углеродного скелета из пяти-шести углеродных атомов не составляет проблемы для современной органической химии. Несколько сложнее, но также вполне в пределах синтетических возможностей, снабдить каждый из этих атомов функциональной группой — спиртовой, аминогруппой, карбонильной и т. д. Еш,е Бутлеров более 100 лет назад осуш,ествил синтез смеси моносахаридов с присуш,ей им бутлеровской структурой, использовав одно из простейших органических соединений —формальдегид. Загвоздка, однако, заключается в том, что большинство углеродных атомов моносахаридной молекулы асимметрично. Поэтому синтез природного моносахарида обязательно предполагает не только создание нужного углеродного скелета и необходимого набора функциональных групп, но и возможность придания всем асимметрическим центрам вполне определенной относительной и абсолютной конфигурации. А такая задача весьма трудна даже для современной высокоразвитой органической химии, если в качестве исходных соединений используются простые молекулы без элементов асимметрии или даже более сложные системы, содержаш,ие один-два асимметрических центра с нужной конфигурацией. [c.119]

    Таким образом, с точки зрения хиральности любая асимметричная фигура хиральна, но асимметрия не является необходимым условием хиральности. Все диссимметричные фигуры также хиральны, если диссимметрия вызвана отсутствием элементов симметрии второго рода. В этом смысле диссимметрия - синоним хиральности. [c.75]

    Очевидно, в неспиральных белках на эффект Коттона сильно влияют другие элементы пространственной структуры, например асимметрия, присущая дисульфид-ным связям или ароматическим остаткам в окружении асимметричных центров, что приводит к более или менее сильным искажениям. Кроме того, проявляемый эффект в случае /3-структуры намвого ниже, чем в случае а-спирали. Ситуация усложняется еще тем, что и другие структуры обусловливают эффект Коттона подобно а-спиралям. [c.385]


Смотреть страницы где упоминается термин Асимметрия элементы: [c.324]    [c.324]    [c.157]    [c.218]    [c.146]    [c.58]    [c.228]    [c.266]    [c.17]    [c.206]    [c.58]    [c.28]    [c.228]   
Углубленный курс органической химии Книга 1 (1981) -- [ c.44 ]




ПОИСК







© 2025 chem21.info Реклама на сайте