Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активация молекул

    Скорость распространения пламени зависит от давления, при котором происходит процесс горения. При снижении давления ниже атмосферного скорость горения вначале несколько возрастает, а затем падает. Нормальная скорость распространения пламени зависит также от температуры горючей смеси, по которой распространяется пламя. На рис. 51 приведена зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана. Как видно, скорость распространения пламени увеличивается с повышением температуры по линейному закону. Этот характер зависимости сохраняется и для других классов углеводородов, при этом изменяется лишь угол наклона прямой относительно оси абсцисс. Большое влияние на нормальную скорость распространения пламени оказывает энергия активации молекул топлива чем меньше энергия активации, тем выше скорость нормального распространения пламени (табл. 15). [c.80]


    На первый взгляд, проблема элементарного химического акта в мономолекулярной реакции может показаться более простой, чем в бимолекулярной реакции. В действительности это далеко не так. Трудность проблемы заключается в том, что большинство мономолекулярных реакций являются сложными реакциями, протекающими через ряд параллельных и последовательных стадий. В настоящее время общепринятой схемой описания мономолекулярной реакции является схема, предложенная Линдеманом (1922). Рассмотрим особенности мономолекулярной химической реакции типа Ai -> Аа, протекающей в газовой фазе при постоянном объеме. Не вдаваясь в подробности молекулярного механизма процессов активации, дезактивации и химического акта, выразим скорости отдельных стадий и всего процесса с помощью метода формальной кинетики. Скорость п процесса активации молекул Ai можно выразить как сумму скоростей бимолекулярных реакций [c.588]

    Воздействие ультразвука на химические, в том числе и корро-зионны. процессы, связано не только с чрезвычайно сильным перемешиванием жидкой среды (особенно в режиме кавитации), но и с активацией молекул под воздействием кавитации и возникающих перепадов температуры и давления. Какую-то роль при этом могут играть и электрические явления. [c.368]

    Исследовано [42] влияние размеров металлических кластеров на скорость гидрирования циклогексена и бензола в присутствии Р1-и Р1—Аи-катализаторов. (Сплавы Р1—Аи содержали от 4 до 98% Р1. Скорость и энергию активации гидрирования определяли в интервале температур 20—160 °С.) Установлено, что гидрирование циклогексена происходит в 10 —10 раз быстрее, чем гидрирование бензола. Скорость гидрирования зависит от содержания Р1 в катализаторе и резко падает с его уменьшением, причем при малом содержании Р1 гидрирование бензола не происходит совсем. При повышении температуры (до 250 °С) идут дегидрирование и изомеризация. Сплавы Р1—Аи обладают более высокой селективностью, чем Р1. На основании полученных данных авторы [42] делают предположение, что активация молекул бензола происходит на более крупных кластерах, чем активация циклогексена, что возможно только на катализаторах с большим содержанием Р1. [c.35]

    Участие внутренних степеней свободы в активации молекулы. Теории Гиншельвуда, Касселя и Слетера [c.167]

    Как видно из рис, 114, затраченная на активацию молекул энергия затем, при образовании продуктов реакции, полностью или частично выделяется. Если при распаде активированного комплекса выделится энергии больше, чем. это необходимо для активирования молекул, то реакция экзотермическая, в противном случае — эндотермическая. [c.196]


    Здесь А й В обозначают возбужденные молекулы А и В с критической энергией Е. При этом А является любой формой активных частиц, которые могут возникнуть при активации молекул А при дезактивации возбужденных частиц А могут образоваться только молекулы А. Возбужденные молекулы В определяются аналогично . Эту схему можно представить в виде диаграммы потенциальной энергии, как показано на рис. XI. 1, где приведено сечение поверхности потенциальной энергии, соответствующее минимальным величинам 17 для различных величин Ь. Все состояния слева от о являются состояниями А или А, правее — В или В. Как следует из рис. XI.1, реакция эндотермична, так как минимум энергии для В располагается выше, чем минимум энергии для А. Разность этих двух энергий соответствует тепловому эффекту реакции А . [c.204]

    Данные по рекомбинации радикалов и атомов, являющейся реакцией третьего порядка, позволяют вычислить скорость обратного процесса, а именно скорость активации молекул при соударениях. Рассмотрим соединение двух активных компонентов А и В в стабильный продукт АВ. Если реакция достаточно экзотермична или продукт АВ имеет мало внутренних степеней свободы, механизм ассоциации сложный и должен включать действие третьего тела М. Реакция может протекать по следующим путям  [c.276]

    Развитие химической промышленности сопровождается не только количественным ростом энергопотребления, но и качественным изменением его. Это выражается во все более интенсивном внедрении в химическое производство таких новых видов энергии и воздействия на систему как плазмохимическое, ультразвуковое, фото- и радиационное воздействие, действие низковольтного электрического разряда и лазерного излучения. Эти экстремальные воздействия способствуют активации молекул реакционной системы, возникновению в ней возбужденных частиц и инициированию химического, в том числе, с высокой селективностью, процесса. Эта область явлений составляет новую отрасль химии — химию высоких энергий (ХВЭ), изучающую состав, свойства и химические превращения в системах, содержащих возбуждающие частицы. [c.66]

    В последние годы интенсивно изучаются процессы превращения толуола и ряда других углеводородов на Rh-катализаторах в присутствии водяного пара [269—272]. Известно, что добавки Pt и других благородных металлов повышают активность и селективность Rh-катализаторов деалкилирования толуола. Для уменьшения расхода благородных металлов изучено [269] промотирующее влияние на выход целевого бензола оксидов Ni, Со, Fe, U, Th, Се, Сг, Мо, W. Показано, что сами по себе указанные оксиды в количестве 1 — 2% (масс.) не обладают деалкилирующей активностью. Наилучшими промоторами являются РегОз и UO3. Зависимость конверсии толуола и селективности образования бензола от мольного отношения Н2О толуол представлена на рис. 37. Эти результаты хорошо согласуются с данными, полученными А. А. Баландиным и сотр. [262] при исследовании деалкилирования толуола водяным паром на Ni-катализаторе. На основании полученных результатов обе группы авторов считают, что при деалкилировании толуола с помощью водяного пара активация углеводорода происходит на активных центрах металла (Ni или Rh), активация молекул воды—на поверхности оксида алюминия и оксидов металлов, образование СО и СО2 — на границе раздела между указанными центрами. [c.176]

    А5 определяет наиболее благоприятные условия активации молекул и является энтропией активации реакции (О ). [c.34]

    Каков механизм активации молекул при мономолекуляр-ном превращении  [c.162]

    Участие внутренних степеней свободы в активации молекулы( 167  [c.167]

    Скорость процесса. Даже при сравнительно высоких температурах энергия активации молекул азота велика и процесс синтеза аммиака в гомогенной газовой фазе практически неосуществим. Для снижения энергии активации используются катализаторы, позволяющие значительно уменьшить температуру процесса. [c.198]

    Согласно современным представлениям, жидкофазная гидрогенизация непредельных соединений, осуществляемая на порошкообразном катализаторе, является сложным процессом, состоящим из многих взаимосвязанных и обратимых стадий 1) растворение водорода в жидкости 2) диффузия молекул водорода и непредельного соединения к поверхности катализатора 3) адсорбция реагирующих веществ на контакте 4) активация молекул водорода и непредельного соединения катализатором 5) акты реакции на контакте 6) десорбция и диффузия в объем молекул продукта реакции. [c.67]

    Необходимой стадией всякого химического превращения является процесс активации молекулы, при котором она переходит на высший энергетический уровень. Различные превращения молекулы, имеющие место в таком энергетическом состоянии, создают химическую реакцию. Молекулы либо сами, сталкиваясь друг с другом, образуют молекулу нового вида, либо распадаются на отдельные атомы и радикалы, которые в свою очередь сталкиваются и образуют новое соединение. [c.105]

    Полученный результат можно распространить также на более общий случай, когда наряду с активацией молекул X активизируются также молекулы У. Такое обобщение скажется в основном на константах скорости в формулах (21.2Г)), (21.26) и (21.27) и на увеличении числа слагаемых в этих формулах. Следует, однако,указать, что при другом механизме реакции (например, в случае образования стабильных промежуточных комплексов МХ или МУ) формула (21.27), вообще говоря, пе будет иметь места. [c.147]


    ФОТОХИМИЧЕСКАЯ АКТИВАЦИЯ МОЛЕКУЛ Закон Ламберта—Беера [c.156]

    Фотохимическая активация молекул (у  [c.157]

    Фотохимическая активация молекул 15 ) [c.159]

    Фотохимическая активация молекул 161 [c.161]

    Мономолекулярные реакции с участием многоатомных молекул являются наиболее трудоемким объектом моделирования с помощью метода классических траекторий. Сложности вычислений связаны как с процедурами адекватного воспроизведения различных видов активации молекулы, так и с необходимостью расчетов длинных по времени траекторий. В этом разделе анализируются конкретные реакции мономолекулярного распада, исследованные методом классических траекторий. В рассмотренных работах изучен механизм межмодового перераспределения энергии и протекания мономолекулярной реакции в зависимости от вида активации молекулы. Предложены процедуры адекватного воспроизведения начальных условий, соответствующих тому или иному виду активации. Как уже отмечалось выше, динамические расчеты могут служить базой для проверки статистических теорий, которые широко используются в теории мономолекулярного распада. В ряде работ проведена проверка применимости статистических теорий на базе вычисления функции распределения по временам жизни, определено время установления равновесного распределения. [c.113]

    Ез реагирующих молекул в интервале времени от 1 — момента активации молекул А и В — до 3 — момента дезактивации образовавшихся молекул О и Е. Под внутренней энергией будем понимать энергию вращательного, колебательного и электронного движения. [c.560]

    На первой стадии исходные молекулы А, и Аа, сталкиваясь с другими молекулами, переходят в энергетически возбужденное, активное состояние а и А Процесс активации молекул А) и А протекает с высокими скоростями как в прямом, так и в обратном направлениях. Скорость реакции на второй стадии относительно невелика и лимитирует общую скорость процесса. Концентрации активных молекул малы, значительно меньше концентрации реагирующих молекул А1 и Аг, т. е. й с и Са > Процесс активации протекает с высокими скоростями, поэтому можно принять, что на стадии активации устанавливается равновесие, которое определяется константой равновесия К. Будем рассматривать систему как идеальную. Тогда [c.563]

    О. В то же время в гипотезе о сильных столкновениях предполагается, что частота столкновений, переводящих молекулу из состояния / во все другие состояния у, не зависит от /. Согласно же принципу детального равновесия активация молекул также должна быть преимущественно ступенчатой. Ступенчатый механизм активации молекул должен сказаться, в свою очередь, на скорости диссоциации. [c.212]

    В обычных условиях азот непосредственно взаимодействует лишь с литием с образованием LigN. При активации молекул N2 (нагре-ваниш, действием электроразряда или ионизирующих излучений) азот )бычно выступает как окислитель и лишь при взаимодействии с фтором и кислородом — как восстановитель. [c.345]

    Загрязнения, попадающие в атмосферу, претерпевают ряд химических превращений, приводящих к образованию нежелательных продуктов, вызываюн их, в частности, фотохимический смог. Для атмосферных реакций, обычно протекающих при довольно низких температурах, важным фактором активации молекул является солнечный свет. Бимолекулярные взаимодействия кванта света с молекулой и вызываемые им последующие физические и химические изменения называются фотохимической реакцией. Солнечный свет — обязательное условие фотохимических процессов. [c.26]

    Отметим, что характеристич1гое давление должно быть выше, если Xfj меньше, чем 1 или если v > 1013 сек 1. Величины, приведенные в табл. XI. 2, являются, таким образом, лишь вероятными величинами. На самом деле слишком маловероятно, чтобы = 1, так как нельзя ожидать, что при дег<активации молекулы, имеющей энергию гораздо больше, чем , должно быть эффектниным единственное столкновение. [c.212]

    Механизм свободных радикалов предсказывает изменение порядка реакции от 1/3 при высоких давлениях до 1 /2 при низких давлениях, при этом следует принимать во внимание изменение реакции инициирования цепи от мономолекулярной до бимолекулярной при низких давлениях согласно теории активации молекул столкновением. Такое предсказанное изменение находится в качественном соответствии с наблюдаемым уменьшением значений констант первого порядка при уменьшении давления. По экспериментальным данным реакция при высоких давлениях имеет приближенно первый порядок, но следует иметь в виду, что отличить реакцию первого порядка от реакции половинного порядка по одному только изменению начального давления в ограниченном интервале и наблюдению смещения констант первого порядка довольно трудно. Кухлер и Тиле [25] предполон или, что даже при высоких давлениях инициирование цепи является бимолекулярной реакцией, для которой теоретически предсказывается первый порядок при указанном давлепии. Это, конечно, не может согласоваться с их процессом экстраполирования констант скорости до бесконечного давлеиия, так как этот процесс означает, что реакция мономолекулярна, по крайней мере, при высоких давлениях. [c.25]

    В 1922 г. Линденмаи предложил схему, позволяющую понять механизм мономолекулярных реакций, исходя из представлений о столкновении молекул. Чтобы произошел мономолаку-лярный процесс распада молекулы А, необходимо, чтобы зна обладала колебательной энергией, достаточной для разрыва связей. Эту энергию молекула может накопить в результате соударений, т. е. процесс активации молекулы можно записать в виде  [c.163]

    И л схемы Линдемана вытекает, что активация молекул является бимолекулярным процессом, скорость которого описьь вается уравнением [c.167]

    Для объяснения энергетики звукохимических процессов предложены две теории тепловая и электрическая. Согласно тепловой теории молекулы переходят в возбужденное состояние в результате значительного повышения температуры внутри кавитационного пузырька в процессе его адиабатического сжатия. Электрические теории объясняют процесс активации молекул возникновением и накоплением электрических зарядов на стенках кавитационного пузырька. Установка для звукохимических реакций состоит из реактора и генератора ультразвуковых колебаний [И]. [c.25]

    Радиационно-химические реакторы. В радиа-циоино-химическнх реакторах активация молекул обеспечивается поглощением ими ионизирующего излучения высокой энергии, главным образом -излучения или потока электронов- [c.101]

    Эти два механизма описывают два противоположных случая активации. В обп(ем случае следовало бы основываться на уравнении (8.34), которое описывает релаксацию с произвольной величиной измепения энергии молекулы АВ при столквовении. Подход такого рода используется, иапример, для описания дезактивации молекул, возникающих при химической активации [1131, и при активации молекул в пределе низких давлений [.5501. Мы кратко остановимся на последнем вопросе в связи с обсуждением эффективности активации различными партнерами. [c.107]

    В фотохимических реакциях, т. е. реакциях, идущих под дсйстбисм спета, главным источником активации молекул реагирующих веществ является световая энергия. Рассматривая поглощение света как взаимодсйстЕис фотонов с молекулами поглощающего вещества и приняв за меру интенсивности света данной длины волны число соответствующих фотонов ослабление света в поглощающем слое толщины х можно выразить уравнением [c.156]

    Отметим, что, как было показано в работе [579], при фотохимической активации молекул О2 в области дискретного поглощения (X = 1849,6 А) в результате предиссоциации в качестве первичных активных центров образуются атомы О, как ч области сплошного поглощепия подобно тому, как это имеет место для галогенов. [c.167]

    Первоначальная активация молекулы происходит за сче1 отрыва гидрид-иона от а-углеродного атома заместителя с образованием фенилциклогексил-катиона. Взаимодействие этого [c.207]

    Детальный механизм реакций гидрирования СО может быть сформулирован исходя из общепризнанной сейчас точки зрения о глубокой химической сущности катализа при рассмотрении взаимодействия монооксида углерода и водорода с активными центрами катализатора. Основным фактором, определяющим динамику поверхностного механизма взаимодействия СО и Н2, вероятные маршруты превращений промежуточных поверхностных комплексов и, как следствие, направление реакции гидрирования монооксида углерода, является форма активации молекул СО и Нт, определяемая природой центрального атома металла, типо.м его литандного окружения и внешними условиями синтеза, в первую очередь, температурой и давлением в системе. [c.169]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисерг, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасыщенные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соедпнение можно рассматривать как активный центр, который может активировать молекулы горюч й смеси и тем самым сильно способствовать ускорению химической реакцпи. Подтверждением теории свободного водорода (как дополнительного фактора-детонации) и является хорошо известная большая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окнсляел1ых ненредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае нос родстве и но окисляемых предельных углеводородов этот процесс завершиться не успевает. Это том более важно, что именно нестойкие формы перекисей глав- [c.356]

    С помощью этой модели можно вычислять функцию распределения по максимальным временам спонтанного распада, которая является детальной кинетической характеристикой мономолекулярной реакции [406]. Максимальным временем спонтанного распада называется временной интервал между двумя последовательными прохождениями траекторией окрестности активированного комплекса с последующим необходимым распадом. За это время часть распадной траектории Г должна пройти область фазового пространства, соответствующую возбужденной молекуле, а затем возвратиться к области активированного комплекса, но уже с такими направлениями импульсов, которые непосредственно ведут к распаду молекулы. Максимальное время спонтанногг аспада является случайной величиной, так как начальные условия выбираются случайно. Функция распределения 1 т) этой случайной величины может быть определена при статистической обработке результатов моделирования. Используя эту функцию, можно получить константы скорости распада при различных видах активации молекулы. [c.72]

    Выбирая различные начальные области в фазовом пространстве, можно получить fкp (т), соответствующее тому или иному виду активации молекулы. Конечная область, соответствующая положению критической поверхности, определяется из конкретных динамических расчетов. При дости квнии изображающей точкой этой поверхности происходит необрати- мый распад молекулы, наблюдаемый в численных экспериментах. [c.75]

    Динамико-статистическое описание возбужденных молекул было использовано для численного моделирования колебательно-возбужденной молекулы СНгР с ППЭ вида (4.17). Начальная область фазового объема выбиралась так, чтобы провести моделирование условий химической активации молекулы СН2 Р1 в результате присоединения атома Р к радикалу СНг I. Конечная область фазового пространства определялась заданной величиной растяжения связи С-1 (5к = / < . ). Полная энергия системы атомов СН2Р1 равнялась ПО ккал/моль. Величина энергии связи С—Р случайным образом задавалась в интервале от 90 до 100 ккал/моль. Остальная энергия также произвольно распределялась по оставшимся связям. Было выбрано четыре конечных состояния. Эти состояния соответствовали длинам [c.124]

    После г = 3 10" с скорость образования радикалов СНз заметно падает. Таким образом, при адиабатическом характере процесса максвеллизации утечка горячих молекул метана по координате химической реакции не успевает скомпенсироваться процессом активации молекул метана при их столкновениях с молекулами аргона. Своеобразное плато на кривой выхода радикалов СНз (см., например, рис. 8.5, кривая /) соответствует по времени смене режимов процесса максвеллизации. [c.208]

    Е < О по сравнению с распределением Максвелла. Если считать, что механизм активации молекул носит в значительной степени ступенчатый характер, то такое отклонение от функции Максвелла должно привести к уменьшению частоты активирующих столкновений, а следовательно, и скорости реакции. Поскольку отклонение от распределенин Максвелла сильнее в случае г= 0,2 10 с, то и отрицательная температурная зависимость в этом случае должна быть сильнее, что и следует из выражений (8.61) и (8.62). [c.213]


Смотреть страницы где упоминается термин Активация молекул: [c.256]    [c.613]    [c.206]    [c.211]   
Физикохимия полимеров (1968) -- [ c.52 ]

Химический энциклопедический словарь (1983) -- [ c.18 ]

Физикохимия полимеров (1968) -- [ c.52 ]

Химия Краткий словарь (2002) -- [ c.13 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.18 ]

Курс общей химии (1964) -- [ c.87 , c.88 ]

Учебник общей химии 1963 (0) -- [ c.94 ]




ПОИСК







© 2025 chem21.info Реклама на сайте