Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение растворенного вещества между

    Коэффициент распределения зависит от химического строения растворенного вещества и обоих растворителей (первоначального и вторичного) и является результатом действия тех же межмолекулярных сил, которые влияют на растворимость. Растворимость в одной жидкости и распределение растворенного вещества между двумя несмешивающимися жидкостями могут совершенно различаться по своему характеру. В системах вода—органическая жидкость— растворенное вещество замечено влияние разных групп, содержащихся в молекуле растворенного вещества, на коэффициент распределения (отношение концентрации в органической фазе к концентрации в воде). Эти группы по своему характеру могут быть гидрофильные, облегчающие растворимость в воде, и гидрофобные, способствующие растворимости в органической жидкости. К числу первых относятся группы ОН, 1 Нд, СООН, ко вторым—группы со связью С—Н, продолжающие углеродную цепь. Эти явления качественно [c.24]


    Экстракция жидкостей. Распределение растворенного вещества между жидкими фазами определяется законом распределения Нернста отношение концентраций вещества, которое растворено в двух несмешивающихся и находящихся в равновесии жидких фазах при определенной температуре — величина постоянная, называемая коэффициентом распределения = К. [c.36]

    Из рассмотрения различных равновесий следует, что коэффициент распределения растворенного вещества между двумя растворителями равен отношению растворимостей данного вещества (в виде кристаллической, жидкой или газообразной фазы) в двух растворителях, если растворимости невелики. [c.264]

    Равновесие некоторых химических реакций (диссоциация на ионы в электролитах, ассоциация молекул, комплексообразование и др.) в растворах можно изучить, исследуя распределение растворенного вещества между двумя несмешивающимися растворителями. [c.288]

    Постоянство селективности можно объяснить тем, что в системе капролактам — вода одновременно с ростом концентрации в объеме раствора меняется состав связанного слоя, но как толщина его, так и коэффициент распределения растворенного вещества между этим слоем и раствором от изменения концентрации в последнем практически не зависят. То, что зависимость Х2=1(х1) экстраполируется в начало координат, свидетельствует о том, что в системе капролактам — вода оба компонента смеси обладают способностью сорбироваться на поверхности мембраны. Наклон этой прямой характеризует их относительную способность к сорбции. [c.222]

    Распределение растворенною вещества межд> двумя жидкими фазами. [c.91]

    Распределение растворенного вещества между двумя несмешивающимися растворителями. Равновесие при распределении растворенного вещества между двумя несмешивающимися растворителями описывается равенством химических потенциалов растворенного вещества в том и другом растворителе  [c.210]

    Распределение растворенного вещества между двумя растворителями тоже приближенно может быть описано как распределение в некотором эффективном потенциальном поле. Если считать, что потенциал этого поля в первом растворителе равен /,, а во втором /,1 и в соответствии с идеями, развитыми в гл. V, применить к разбавленному раствору закон распределения, выведенный для идеального газа, то [c.211]


    Распределение растворенного вещества между двумя несмешивающимися растворителями. [c.222]

    Для осуществления хроматографического процесса необходимо, чтобы один слой жидкости перемещался относительно другого. В этом случае распределение растворенных веществ между двумя слоями жидкости происходит многократно в динамических условиях. При хроматографии на бумаге одна, более полярная жидкость сорбируется волокнами бумаги, образуя фиксированную (неподвижную) жидкую фазу другая, менее полярная жидкость, смачивая волокна бумаги, поднимается по листу в силу явления капиллярного поднятия. [c.305]

    Для измерения поверхностного натяжения индивидуальных жидкостей пригодны все методы, поскольку между результатами, полученными статическими и динамическими способами, нет заметной разницы. У растворов же результаты измерений о разными методами могут сильно отличаться из-за медленного установления равновесного распределения растворенных веществ между свеже-образованной поверхностью и объемом раствора. Это в особенности относится к растворам мицеллообразующих и высокомолекулярных ПАВ (белковые вещества, сапонины, высшие гомологи мыл). Получение в таких растворах равновесных значений поверхностного натяжения требует применения статических методов. Пригодны и некоторые из полустатических методов, например методы отрыва кольца, счета капель, наибольшего давления пузырьков и др. При простоте и удобстве работы эти методы дают вполне удовлетворительные результаты, если измерения проводят таким образом, что время формирования новой поверхности в виде капли является достаточным для установления концентрационного равновесия. В растворах низкомолекулярных ПАВ равновесные значения а обычно достигаются менее чем за минуту для растворов ПАВ более сложной структуры на установление равновесия может потребоваться до нескольких десятков минут в связи с медленной диффузией их молекул. Таким образом, для правильного выбора метода исследования необходимо учитывать кинетику установления равновесных, т. е. наименьших, значений поверхностного натяжения. [c.311]

    РАСПРЕДЕЛЕНИЕ РАСТВОРЕННОГО ВЕЩЕСТВА МЕЖДУ ДВУМЯ НЕСМЕШИВАЮЩИМИСЯ ЖИДКОСТЯМИ [c.346]

    Критерий подобия характеризует коэффициент распределения растворенного вещества между двумя фазами. [c.384]

    Распределение растворенного вещества между двумя жидкими фазами определяется законом распределения Нернста  [c.84]

    Распределение растворенного вещества между двумя растворителями [c.264]

    Время разделения в свою очередь определяется большим числом переменных, начиная с термодинамических свойств ЖХ-системы. Коэффициент распределения растворенных веществ между подвижной и неподвижной фазами к определяет отношение объема ко времени, требуемому для элюирования этого растворенного вещества из хроматографического слоя (см. разд. 1.3.1). Хотя меньшие значения к позволяют увеличивать нагрузку в адсорбционной ЖХ (разд. 1.4.2), увеличение к примерно до 5 может обеспечить увеличение разрешения (разд. 1.3.3). При оптимизации коэффициента разделения а комбинацию подвижной и неподвижной фаз прежде всего выбирают так, чтобы сделать максимальным отношение коэффициентов к, и затем стремятся установить наименьшее значение к, которое позволяет работать с хорошей нагрузкой при приемлемом разрешении, поскольку это минимизирует расход растворителя и общее время разделения. К сожалению, во многих случаях трудного разделения (а<1,3) увеличение времени разделения и расхода растворителя являются обычной платой за достижение требуемого результата. При заданном количестве образца разделение можно выполнить или путем его повторения несколько раз с использованием малой нагрузки на колонке малого объема (высокая эффективность на единицу длины), или за один пробег при полной нагрузке на колонке большего объема (та же общая эффективность, но большая емкость, см. разд. 1.4.3.2). Даже в последнем случае, который обычно оптимален, может потребоваться большее время для того, чтобы разделить необходимое количество образца. [c.41]

    Остановимся также на распределении растворенного вещества между жидкой и твердой фазами, с которым приходится сталкиваться при изучении так называемого ионного обмена. Для осуществления этого процесса применяются специальные твердые вещества с очень большим молекулярным весом, нерастворимые в предполагаемых растворителях. На поверхности такого твердого вещества более или менее равномерно распределены электрические центры. Эти центры удерживают около себя простые ионы с зарядами противоположного знака, так что весь агломерат в целом оказывается электрически нейтральным. Простые ионы могут замещаться на поверхности твердого вещества другими ионами или, как говорят, обмениваться с ними. Если на поверхности твердого вещества распределены отрицательно заряженные центры, обменивающимися на них ионами оказываются катионы (в этом случае вещество называется катионообменником), в противном случае происходит обмен анионами (и вещество называется анионообменником). [c.220]


    Из закона распределения растворенного вещества между двумя несмешивающимися жидкими фазами следует, что при применении определенного количества растворителя нужно проводить извлечение не сразу всем имеющимся объемом, а несколько раз небольшими частями растворителя. Это ясно подтверждается простыми подсчетом по уравнению [c.95]

    Распределение растворенного вещества между двумя несмешивающимися растворителями при постоянной температуре определяется коэффициентом распределения К, который зависит от соотношения объемов растворителей  [c.24]

    Распределительная хроматография (конкурентное распределение растворенного вещества между двумя растворителями)  [c.29]

    С другой стороны, по используемой методике различают колоночную, бумажную, тонкослойную, газовую хроматографии и т.д. Простейшим примером распределения растворенных веществ между растворителями является экстракция. Можно сказать, что упомянутая выше про-тивоточная экстракция представляет собой нечто среднее между экстракцией и распределительной хроматографией. [c.29]

    J -j Чгебледования распределения растворенного вещества между двумя несмешивающимися растворителями [c.288]

    Лекция 21. Закон распределения растворенного вещества между двумя несмб1 швающимися растворителями. Коэффициент распредв юния. Одноступенчатая и многоступенчатая экстракции. [c.210]

    Эффективность процесса зависит от скорости массопередачи, т. е. распределения растворенного вещества между двумя несме-шиваемыми жидкими фазами. [c.158]

    Гранулированные гели. Разделение на гелях основано на распределении растворенных веществ между растворителем (подвижная фаза) и растворителем, содержащимся в порах геля (стационарная фаза). В отличие от распределительной хроматографии подвижная и стационарная фазы в этом случае одинаковы. Таким образом, распределение происходит на основе способности растворенных частиц проникать в поры разделение частиц определяется различной скоростью их диффузии. Сродство разделяемых веществ к гелю само по себе должно быть наименьшим во избежание побочных процессов. Для разделения гидрофильных веществ применяют гели на основе декстрана, полиакриламида или агаровый гель. Для разделения гидрофобных веществ необходимо применять гели, способные набухать в органических растворителях. Такие гели получают перезтерификацией гидроксильных групп декстранового геля. Этот способ можно применить для получения акриловых и полистироловых гелей, растворимых в жирах. [c.351]

    Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и в каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 23). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бу-тпловьп1, амиловый), хлоропроизводные (хлороформ, четыреххлористый углерод). Иод можно извлечь бензолом, сероуглеродом, хлорное железо — диэтиловым или диизопропиловым эфиром. Лучше всего катионы металлов извлекаются органическими растворителями, если соответствующий металл предварительно связать в виде внутрикомплексного соединения. Например, свинец связывают дитизоном и извлекают четыреххлористым углеродом, никель связывают диметилглиоксимом и извлекают хлороформом в присутствии цитрата натрия. Смеси ионов различных элементов можно разделять экстракцией, используя избирательное (селективное) извлечение различными растворителями и регулируя pH раствора. Можно осуществлять также и групповые разделения ионов. [c.454]

    Распределительная хроматография основана на применении закона распределения растворенного вещества между двумя жидкостями с ограниченной взаимной растворимостью. Для характеристики хроматографируемого вещества необходимо определить его способность к передвижению в толще бумаги или другого носителя. [c.520]

    Пусть идеальный газ при постоянной температуре находится в соприкосновении с жидкостью, в которой он может растворяться. Условие равновесия распределения растворенного вещества между газом и л<идкостью заключается в равенстве его химических потенциалов в этнх фазах, т. е. Х2газ = 42раствор ИЛИ, согласно уравнбниям (П.33) И ( . 16)  [c.109]

    Эффект перегрузки (нелинейный сигнал) в ГПХ состоит в значительных потерях разрешения и эффективности колонки, обусловленных фракциями с очень высоким молекулярным весом. Этот эффект могут вызывать концентрационная зависимость гидродинамического объема растворенного веш,ества и неравновесное распределение растворенного вещества между неподвижной фазой геля и подвижной фазой растворителя. При определении количества образца нужно иметь в виду, что вязкость его не должна превосходить вязкость растворителя более чем вдвое, а объем пробы должен быть маленьким, так как ширина зоны, т. е. ширина пика, линейно возрастает с увеличением объема образца. Колонки для ГПХ не следует перенагружать, объем образца не должен превышать 15 мг на 100 мл объема колонки. [c.60]

    Принцип хроматографических процессов, как правило, состоит в распределении растворенного вещества между двумя фазами, одна из которых является подвижной, а другая — неподвижной. Вещества могут распределяться на неподвижной фазе за счет адсорбции, распределения (когда, например, жидкость, не смещивающаяся с подвижной фазой, может быть нанесена на поверхность твердого носителя), ионного обмена или проникания в гель. Практически хроматографические процессы во многих случаях, будучи использованы в целях фармацевтического анализа, могут представлять собой сложное сочетание нескольких физических явлений несомненно, на многие хроматографические методики, которые считаются распределительными, в значительной степени влияют и адсорбционные эффекты. [c.91]

    Распределительная хроматография основана на распределении растворенного вещества между двумя несмешива-ющимися жидкостями (жидкими фазами). [c.277]


Смотреть страницы где упоминается термин Распределение растворенного вещества между: [c.238]    [c.116]    [c.224]    [c.108]    [c.62]    [c.219]    [c.241]   
Физическая химия Том 2 (1936) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте