Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещество распределение между двумя жидкими

    Сущность метода. При использовании ГЖХ для определения низких концентраций веществ, содержащихся в воздухе, применяют два основных метода предварительного концентрирования. Согласно первому через концентратор пропускают анализируемый воздух в таком количестве, чтобы сорбент был полностью насыщен анализируемым веществом. Чаще всего в этом случае используют охлаждение (жидкий азот, сухой лед с ацетоном). Этот метод наиболее пригоден для анализа малолетучих веществ. По второму методу анализируемый газ пропускают через концентратор в таком количестве, чтобы наступило равновесие между сорбентом и газовой фазой. Этот метод пригоден главным образо.м для легколетучих веществ с небольшим коэффициентом распределения. [c.166]


    Рассмотрим это важнейшее уравнение более подробно. Если, а=1, то разрешение равно О, т.е. разделения нет независима от числа теоретических тарелок в колонке. Однако из характера функции а в уравнении видно, что небольшие изменения могут привести к заметному увеличению разрешения, особенно для тех случаев, когда значения а близки к 1. Если за счет подбора условий разделения удается изменить а с 1,1 до 1,2, это приводит к улучшению разрешения в два раза. Таким образом, на фактор селективности следует обращать основное внимание при подборе условий разделения, учитывая различие во взаимодействии разделяемых компонентов как в неподвижной, так и в подвижной фазе. В отличие от газовой хроматографии, в которой взаимодействия в подвижной (газовой) фазе незначительны и селективность системы в основном определяется только взаимодействиями веществ с неподвижной фазой, в жидкостной хроматографии подвижная (жидкая) фаза не является инертной, а может играть главную роль в процессе термодинамического распределения между неподвижной и подвижной фазами вследствие селективного взаимодействия разделяемых веществ с подвижной фазой. Поэтому в выборе условий для высокоселективного разделения как выбор [c.10]

    Следует отметить, что метод определения упругости пара, достаточно точный и выгодный при высоких концентрациях, при низких концентрациях становится неточным. Метод распределения веществ между двумя жидкими фазами имеет то преимущество по сравнению с методом определения коэффициентов активности по упругости пара, что он дает возможность определять концентрации в разбавленном растворе более точно, чем упругость пара. Недостатком этого метода является то, что никогда нельзя быть уверенным в том, что любые два растворителя действительно не смешиваются-Такое смешение, в частности, происходит при увеличении концентрации добавляемого вещества.  [c.90]

    Предположим, что исходный водный раствор содержал два растворенных вещества А и Б. Если сродство органического растворителя к одному из них намного больше, чем сродство к нему воды, то это вещество полностью или почти полностью перейдет из водной фазы в органическую. Распределение растворенного вещества между двумя жидкими фазами определяется законом распределения согласно ему отношение концентрации вещества, которое растворено в двух несмешивающихся и находящихся в равновесии жидких фазах, при определенной температуре — величина постоянная, называемая концентрационным ко э ф ф и ц и е н т о м распределения л,- [c.294]


    Два вещества (с коэффициентами распределения Кг и Ко) в идеальном случае распределяются между обеими жидкими фазами независимо друг от друга. Если разность в их коэффициентах распределения достаточно велика, то их можно разделить простой экстракцией. Трудность разделения определяется фактором разделения р )  [c.70]

    Интересно напомнить, что определение величины поверхности твердых тел методом изотопного обмена относится к числу первых методов, предусматривавших применение радиоактивных изотопов для решения химических проблем. Панет [197] показал, что если осадок сульфата свинца достигнет состояния равновесного обмена с насыщенным раствором сульфата свинца, содержащего торий В, то на основании данных о распределении радиоактивного изотопа можно оценить величину поверхпости твердого сульфата. Сейчас радиоизотопный метод широко распространен, и с его помощью выполнено множество ценных исследований в области химии поверхности (см. разд. 3.3.7.1), включая несколько попыток прямого анализа химического состава поверхностей катализаторов путем обмена или адсорбции меченых радиоактивных веществ из газообразной или жидкой фаз. Мы кратко рассмотрим здесь три примера такого анализа, причем два из них включают изотопный обмен между твердой и жидкой фазами. [c.95]

    Два вещества (с коэффициентами распределения К и К2) в идеальном случае распределяются между двумя жидкими фазами независимо друг от друга. Если различие в величинах их коэффициентов распределения достаточно велико, то такие вещества разделить при помощи экстракции просто. [c.87]

    Два вещества (с коэффициентами распределения Кг и К ) в идеальном случае распределяются между двумя жидкими фазами независимо друг от друга. Если раз- [c.38]

    Если два жидких металла не смешиваются между собой, то третий металл, находящийся в растворе, при достижении равновесия будет распределяться между двумя фазами в соответствии с обычным законом распределения (см. раздел 8. 1). Отклонение коэффициента распределения от постоянной величины может быть обусловлено отклонением раствора в какой-либо фазе от идеального состояния. Они могут быть вызваны, например, взаимодействием молекул и атомов растворителя и растворенного вещества. [c.178]

    Если в системе, включающей два жидких слоя, находится несколько распределяющихся веществ и если эти вещества друг с другом не взаимодействуют, то каждое из них распределяется между обоими жидкими слоями со своим индивидуальным коэффициентом распределения независимо от присутствия других веществ. [c.293]

    Большинство веществ (как жидких, так и твердых) растворяется в нескольких растворителях. Если данное вещество растворено в каком-либо растворителе и к этому раствору прибавить другой растворитель, не смешивающийся с первым, то часть вещества перейдет в этот растворитель, образуя два слоя несмешивающихся жидкостей, в которых будет содержаться данное вещество. При этом распределение вещества между двумя растворителями будет вполне определенным для каждого отдельного случая.  [c.390]

    Компоненты вводимой пробы распределяются между жидкой (или твердой) и газовой фазами в соответствии с их летучестью. Процесс хроматографирования состоит из повторяющихся переходов растворенного вещества между подвижной газовой фазой и неподвижной фазой по мере его продвижения в колонке. При этом каждое растворенное вещество движется вдоль колонки со скоростью, определяемой его распределением между жидкой и газовой фазами и скоростью протекания газа-носителя. Два компонента с различными растворимостями в неподвижной фазе имеют различные скорости движения вдоль колонки и различные удерживаемые объемы. Эффективность практического разделения зависит не только от разницы между этими объемами, но также и от предела, до которого расширились пики из начальной узкой полосы введенной пробы. Два узких пика, расположенных близко друг к другу, можно разделить так же эффективно, как два широких пика, имеющих значительную разницу в удерживаемых объемах. [c.21]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]


    Растворитель, применяемый для экстракции, должен лучше растворять экстрагируемое вещество, чем растворитель, из которого это вещество экстрагируется. Следовательно, экстракция вещества легко осуществима-в том случае, когда коэффициент распределения значительно отличается от 1 (К > 100). Два вещества (с коэффициентами распределения К1 и /(,) в идеальном случае распределяются между жидкими фазами независимо друг от друга. Если разность в их коэффициентах достаточно велика, то их можно разделить простой экстракцией. Трудность разделения определяется величиной р — фактором разделения Р = К1 Кз 1 (больший коэффициент распределения делят на меньший). Оба вещества можно удовлетворительно разделить простой экстракцией только в случае, если > 100. Для разделения смесей с Р = 100 следует применять методы дробной экстракции. [c.36]

    I верхности твердых и жидких тел называется адсорб-, цией. Хотя прочность связи молекул среды (адсорбата) с поверхностью твердого тела (адсорбентом) сильно изменяется от системы к системе, равно как и количество адсорбированного вещества, тем не менее все случаи сорбции можно разделить на два основных типа физическую адсорбцию и химическую (хемосорбцию). Между этими двумя типами адсорбции существует достаточно четкое различие. Физическая адсорбция вызывается силами межмолекулярного взаимодействия. Поэтому ее часто называют также вандерваальсовой адсорбцией. Химическая адсорбция сопровождается образованием на поверхности твердого тела поверхностных химических соединений. Природа хемосорбционной связи идентична природе аналогичных связей в химических соединениях, однако специфика поверхности может существенно влиять на характер связи и распределение электронов во взаимодействующих атомах. [c.27]

    Теория жидкого состояния значительно хуже разработана, чем теория газообразного состояния, и это отчетливо сказывается на уровне теоретической интерпретации явлений химической кинетики в конденсированной фазе. Теория реакций в газовой фазе базируется на двух следствиях молекулярно-кинетической теории возможности расчета числа столкновений между реагирующими молекулами и применимости к реагирующей системе максвелл-больцмановского распределения. При переходе к реакциям в растворах приходится рассматривать третий объект — молекулы растворителя. При этом возможны два крайних случая 1) молекулы растворителя не входят в состав активного комплекса, и их взаимодействие с молекулами растворенного вещества сводится к столкновениям и вандерваальсовому взаимодействию 2) молекулы растворителя входят в состав активного комплекса и в той или иной мере определяют кинетические свойства последнего. Взаимодействие второго типа, пожалуй, больше относится к каталитическим явлениям и будет рассмотрено ниже. Ограничиваясь первым случаем, рассмотрим, в какой мере методы кинетической теории применимы к реакциям в растворах и можно ли для подсчета числа столкновений между реагирующими молекулами в растворах использовать газокинетическое уравнение. Дать обоснованный ответ на этот вопрос трудно и приходится ограничиваться критерием практической применимости расчета. Поскольку при изучении реакций в растворах удобно пользоваться значениями концентраций, выраженных в моль/л, газокинетическое выражение для константы скорости запишется в виде [c.170]

    Прежде всего, являлось необходимым получить исходные вещества, свободные от примесей свинца и стронция и изучить влияние концентрации изотопов свинца и стронция в растворе на величину коэффициента кристаллизации. Изучение зависимости коэффициента кристаллизации от концентрации распределяющегося вещества дает ответ сразу на два вопроса существует ли нижняя граница распределения, характерная для образования аномальных смешанных кристаллов, и как изменяется значение D при увеличении концентрации изотопов свинца и стронция в растворе. Кроме того, являлось необходимым провести изучение распределения микрокомпонента между кристаллами и раствором солей в точных условиях эксперимента, в условиях установления истинного равновесия между жидкою и твердою фазами, пользуясь методикой, разработанной В. Г. Хлопиным и его учениками [9]. [c.225]

    Таким образом, была установлена приложимость общего термодинамического закона распределения микрокомпонента к случаю распределения между жидкой и твердой фазами. Закон распределения микрокомпопента между твердой и жидкой фазами называется законом Хлопина и формулируется следующим образом если два сокристаллизующихся вещества (микро- и макрокомпоненты) являются истинно изоморфными, т.е. сходны по химическому составу и молекулярной структуре, распределение микрокомпонента между твердой кристаллической фазой и раствором происходит в постоянном отно-шепии О к распределению макрокомпонента. Константа О называется коэффициентом кристаллизации. [c.300]

    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    Процесс изоморфной сокристаллизации в зависимости от условий может приводить к гомогенному или гетерогенному распределению радионуклида в твердой фазе. В случае гомогенного распределения устанавливается термодинамическое равновесие между кристаллом в целом и раствором. Закон распределения микрокомпонента между твердой и жидкой фазами называется законом Хлопина. Согласно этому закону, если два сокристаллизующихся вещества (микро- и макрокомпонента) являются истинно изоморфными, т. е. сходственны по химическому составу и молекулярной структуре, распределение микрокомпонента между твердой кристаллической фазой и раствором происходит в постоянном отношении D к распределению макрокомпонента. Константа Z) называется коэффициентом кристаллизации. [c.319]

    Жидкостно-жидкостная хроматография (ЖЖХ) основана на различиях в распределении веществ между двумя фазами, находящимися в жидком состоянии. Практически неограниченный выбор сочетаний несмещивающихся жидкостей делает метод ЖЖХ наиболее универсальным при поиске систем с максимальными коэффициентами селективности для разделяемых веществ. В зависимости от того, полярная или неполярная фаза является стационарной, различают два варианта ЖЖХ нормально-фазный и обращенно-фазный. Использование системы из двух жидких фаз в том или ином варианте ЖЖХ определяется значениями Ко- В качестве стационарной выбирают фазу, в которую преимущественно переходят разделяемые вещества. На размытие хроматографических пиков и, соответственно, их разрещение существенное влияние в ЖЖХ оказывает вязкость применяемых жидких фаз. В первую очередь это относится к подвижной фазе, так как диффузионные ограничения со стороны стационарной фазы устраняются изменением толщины ее слоя на носителе. [c.211]

    В реальных веществах ЯМР наблюдается не строго на одной частоте, как это следует из ур-ния (4), а в нек-ром интервале частот. Форма линии может также отличаться от приведенной на рис. 3. Конечная ширина линии обусловлена различием условий прецессии соседних магнитных ядер в веществе. Эти условия определяются структурой, агрегатным состоянием вещества и рядом других факторов. Поэтому спектры ЯМР стали полезным инструментом при исследовании внутреннего строения и межмолекулярных взаимодействий в твердых, жидких и газообразных соединениях. Важным фактором, определяющим ширину и форму линии ЯМР, является механизм установления равновесного распределения ядерных моментов образца в поле Но- Пока образец находится вне магнитного поля, ориентации векторов х отдельных ядер хаотически распределены по всем направлениям вследствие теплого движения атомов и молекул. При внесенип образца в поле Яо часть векторов л ориентируется по полю, а часть ( меньшая) — против поля, за счет избыточной тепловой энергии. В этом случае, согласно правилам квантовой механики, ядра могут иметь только определенные, дискретные зйаче-ния энергии, Е1 и 2- Переход к распределению в поле Яо требует нек-рого времени. Такие процессы установления носят название релаксационных и проходят через взаимодействие релаксирующих частиц между собой и с окружающей средой. В теории ЯМР рассматривается два механизма релаксации. Первый характеризуется временем установления теплового равновесия между магнитными ядрами и окружающими атомами и молекулами (спин-решеточная релаксация). Второй характеризуется временем установления равновесия в самой системе магнитных ядер (спин-сниновая релаксация). Встречающиеся в экспериментах значения Т1 лежат в интервале от 10 до 10 сек. Для твердых тел Т1 больше, чем для жидкостей и газов. Релаксация ограничивает время жизни ядра в данном состоянии. Это приводит к конечному интервалу частот, в к-ром наблюдается резонанс [c.545]


Смотреть страницы где упоминается термин Вещество распределение между двумя жидкими: [c.10]    [c.10]    [c.438]    [c.26]    [c.71]    [c.41]   
Физическая и коллоидная химия (1960) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте