Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина диоксид

    В качестве анодного материала при электрохимическом получении йодоформа можно использовать платину, никель, графит, нержавеющую сталь, электрохимический компактный диоксид свинца, ОРТА. Выход по току йодоформа на этих анодах примерно одинаков и при плотности тока 2 кА/м и температуре 60 °С составляет 70—80 %. Аноды из графита, никеля и нержавеющей стали имеют низкую коррозионную стойкость и постепенно разрушаются, загрязняя йодоформ. Аноды из диоксида свинца и ОРТА более устойчивы. Наибольшей стойкостью обладают платиновые аноды. [c.203]


    Условия электросинтеза в обоих случаях одинаковы анодная плотность тока 1,5 кА/м , температура — не выще 45 °С. Материалом анода служит платина, графит, диоксид свинца или ОРТА. При работе с водно-ацетоновым электролитом следует иметь в виду, что температура кипения ацетона 56 °С, поэтому температурный режим электролиза должен поддерживаться особенно тщательно. Рассчитывают выход по току и удельный расход электроэнергии при получении йодоформа. [c.206]

    Из-за дороговизны платины окисление хлоратов до перхлоратов предложено проводить на анодах из диоксида свинца, который электролитически осаждается на графитовую или ти- [c.164]

    Сильным каталитическим ядом для платины является оксид углерода. Технологические газы, используемые в пусковых операциях (водород, азот), не должны содержать оксида и диоксида углерода. [c.123]

    Известно, что на платине диоксид серы в присутствии кислорода легко окисляется до триоксида серы  [c.52]

    В последние годы в связи с развернувшейся борьбой за оздоровление воздушного бассейна городов содержание свинцовых антидетонаторов в бензинах непрерывно снижается, и поставлена задача полного исключения токсичных антидетонаторов из состава бензинов. Отказ от применения антидетонаторов связан не только с их токсичностью и токсичностью продуктов сгорания. Современный автомобиль иногда оборудуется специальными устройствами, сжигающими оксид углерода в диоксид в присутствии катализаторов, содержащих платину. Такой катализатор весьма быстро отравляется продуктами сгорания свинцовых антидетонаторов. [c.6]

    Под действием кислорода воздуха и водяных паров хлорид платины превращается в диоксид  [c.79]

    Определение углерода и водорода сжиганием в токе кислорода. Определение углерода и водорода в органических веществах основано на сжигании этих веществ в токе кислорода в присутствии или отсутствии твердых катализаторов или окислителей. Навеску, как правило, сжигают в кварцевой трубке, а указанные элементы определяют в виде образовавшихся диоксида углерода и воды. Из катализаторов лучшим является металлическая платина. Применяют и другие катализаторы алюминий, олово, серебро. [c.811]

    N02 является сильным окислителем и восстановителем он окисляет углерод, фосфор, серу, некоторые металлы, водород н т. п. При этом сам диоксид азота может восстанавливаться до N[ 3. Так, например, N0.,, окисляя водород в присутствии катализатора (платины), образует аммиак  [c.529]

    Условия электролиза. Условия электролиза с целью получения солей пероксодвусерной кислоты мало отличаются от описанных выше. В качестве анодов применяют титан с нанесенной на его поверхность платиной, а также диоксид свинца, электро-осажденный на титановую основу. [c.193]


    Его получают окислением диоксида серы кислородом воздуха в присутствии катализаторов (платины, оксида железа (П1), оксида ванадия (V), оксидов азота и т. п.). [c.577]

    Познакомимся подробнее с контактным методом получения SO3. Смесь диоксида серы и воздуха при 400-500°С пропускают над твердыми катализаторами, называемыми контактами. Эта катализаторы вызывают окисление диоксида серы до триоксида серы. Контакты обычно состоят из тонкоизмельченной платины или оксида ванадия. [c.223]

    Катализ широко при.меняется в современной химии и химической промышленности. Например, в производстве серной кислоты достаточные скорости окисления диоксида серы ЗОг в триоксид 50з достигаются только в присутствии катализатора — платины или оксида ванадия (V). [c.28]

    Выбор анодного материала для электросинтеза гидроксиламина определяется свойствами используемой фоновой кислоты. При электролизе в сернокислой среде анод изготавливают из платины или диоксида свинца при применении соляной кислоты анодом является графит. С целью предотвращения потерь гидроксиламина из-за его окисления на аноде, последний отделяют от катода пористой диафрагмой. [c.201]

    Диоксид церия представляет собой весьма перспективный материал, который может служить основой для получения керамических мембран и катализаторов нового поколения. Преимуществами этих катализаторов являются низкая температура, при которой они обладают достаточной каталитической активностью дешевизна по сравнению с известными катализаторами на основе родия, палладия и платины не высокая чувствительность к серусодержащим соединениям. [c.141]

    Плотность тока. Для поляризации анодов до высоких значений потенциалов, соответствующих оптимальным выходам перхлората по току, необходимы высокие анодные плотности тока. Для платиновых или платино-титановых анодов эти значения составляют 3—5 кА/м , а в некоторых случаях — 10 кА/м . Оптимальный потенциал анода из диоксида свинца имеет на 0,25 В более отрицательное значение, чем потенциал платинового анода. Возможно, поэтому оптимальные плотности тока на анодах из диоксида свинца ниже и составляют 2,0— [c.187]

    При соблюдении описанных выше условий выход перхлоратов по току составляет около 90°/с на платиновых или платино-титановых анодах и 70%—на анодах из диоксида свинца. [c.188]

    Перенапряжение кислорода играет в анодных реакциях такую же роль, как перенапряжение водорода при восстановлении. Однако выбор анодных материалов с разным перенапряжением кислорода крайне ограничен, поскольку определяющую роль играет коррозионная стойкость материала. Гладкая платина, золото, диоксид свинца и стеклоуглерод- коррозионно стойкие материалы с высоким перенапряжением кислорода. [c.183]

    Выбор материалов для анодов крайне ограничен, так как многие металлы растворимы при анодной поляризации. В лабораторных исследованиях широко применяют платину, золото и графит. Свинец с небольшим содержанием серебра и диоксид свинца можно использовать при работе в разбавленной серной кислоте, а железо и никель — в щ елочных растворах. [c.186]

    ПЛАТИНЫ ДИОКСИД Р102, черные крист. 380 °С не раств. в воде, НКОз, Н2804 и царской водке. Образует ДИ-, три- и тетрагидраты. Получ. обезвоживанием Р1(ОН)4. Кат. в органическом синтезе, резистивный материал (порошок). [c.448]

    Пероксид водорода — вещество непрочное, даже при комнатной температуре постепенно разлагается с выделением атомарного (активного) кислорода Н2О2 = HgO + О. Этот распад значительно ускоряется при действии света, при повышении температуры или в присутствии катализаторов (мелко раздробленная платина, диоксид марганца МпОа и др.). [c.462]

    В обычных условиях скорость разложения пероксида водорода невелика, поэтому процесс проводится в присутствии катализатора. Ускоряют разложение Н2О2 многие вещества стекло, платина, уголь, соли и оксиды ряда металлов, в том числе диоксид марганца. Все перечисленные вещества относятся к классу гетерогенных катализаторов. Имеется много веществ, которые в растворенном состоянии ускоряют разложение пероксида водорода — гомогенные катализаторы, например дихромат калия. Известно также немало веществ, замедляющих распад пероксида водорода, — ингибиторов. Так, добавление в раствор пероксида водорода серной кислоты заметно уменьшает скорость его распада. [c.142]

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Оксид железа дешевый, не отравляется мышьяком, но при обычном составе газа (7% SO2 и 11% О2) он проявляет каталитическую активность только выше 625°С, т. е. когда Jip<70%, и поэтому применялся лишь для начального окисления SO2 до достижения Хр 50—60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина он оказался наиболее рациональным, и только он применяется в производстве серной кислоты в СССР. Ванадиевая контактная масса содержит в среднем 7% V2O5 активаторами являются оксиды щелочных металлов, обычно применяют активатор К2О носителем служат пористые алюмосиликаты или диоксид кремния. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца. При катализе оксид калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность пор которого смочена пленкой раствора пяти-оксида ванадия в жидком пиросульфате калия. [c.129]


    ВПУ с наиболее упорядоченной структурой получг1ется при использовании метана и пропана. Морфология ВПУ згшисит от следующих параметров реакции 1) скорости осаждения — чем она меньше, тем более структурно упорядоченно волокно 2) примеси, например хлор и диоксид серы в углероде, препятствуют формированию хорошо организованной тонкой структуры и способны вообще прекратить рост ВПУ 3) температуры отложения, которая находится в пределах 800-1200 С, а наибольший выход волокна достигается примерно при 1000°С. При применении платино-железного катализатора температура процесса может быть понижена до 690°С. [c.461]

    Процесс электросинтеза йодоформа проводят на анодах из графита, никеля, нержавеющей стали, платины, электроосажденного диоксида свинца и ОРТА. Задание предусматривает проведение опытов с тремя из перечисленных материалов. Все три анода должны иметь примерно одинаковую площадь поверхности. Электролитом служит водно-спиртовый или водноацетоновый растворы иодида калия. Условия электролиза во всех трех случаях должны быть одинаковыми и находиться в пределах, указанных в предыдущих опытах. В качестве параметров процесса, как и выше, рассматриваюся выход по току продукта электролиза и удельный расход электроэнергии. [c.206]

    На Р1-электроде и электродах из других металлов группы платины в растворах Н2СО, НСООН и СО2, согласно данным разных авторов, предполагается адсорбция частиц состава НСО, СО, НСОО или смеси таких частиц. Эти частицы окисляются при близких значениях потенциалов и не удаляются при гидрировании. В литературе для них используются названия частицы типа НСО , частицы О-типа или восстановленный СО2 . Последний термин определяется тем фактом, что того же типа частица образуется и при взаимодействии диоксида углерода с Наде на Р1-электроде. [c.102]

    Примечание. Скорость подачи кислорода и регулировку скорости в течение процесса нужно отработать заранее при подготовке опыта. При пропедеиии этого опыта можно наблюдать и образование бурых паров диоксида азота, и белых паров нитрата аммония. В этом случае надо сильно уменьшить скорость пропускания кислорода для того, чтобы платина нагревалась не сильно — только до темно-красного каления. Но в небольшом объеме пары мало заметны в аудитории (см. опыт 241). [c.128]

    Наряду с гомогенно-каталитическими методами гетерогеннокаталитические методы очистки сточных вод с использованием Н2О2 как окислителя скрывают в себе широкие возможности. Особого внимания заслуживает гетерогенно-каталитический вариант, в котором в качестве катализатора используются платиновые металлы. Гетерогенно-каталитический распад Н2О2 на платине, палладии и родии в растворах, содержащих органическое вещество, часто сопровождается интенсивным окислением органических веществ с выделением диоксида углерода как конечного продукта окисления. При этом соотношение между промежуточными и конечным продуктом окисления зависит от ряда факторов, в частности от соотношения концентрации пероксида водорода и органического компонента, природы активной фазы, ха--рактер подложки, pH раствора, температуры и др В этой связи заслуживает внимания гетерогенно-каталитическая система катализатор (кат) — Н2О2 — органический компонент (К). [c.620]

    Для каталитических реакций характерны некоторые особенности. Как правило, катализатор вводится в систему в очень небольших количествах по сравнению с массой реагентов. Тем не менее эффективность действия этих малых добавок необыкновенно высока. Так, одна частица мелкодисперсной платины (платиновая чернь) способна в 1 с разложить 10 молекул перекиси водорода. Активность фермента каталазы еще выше — 3-10 молекул Н2О2 в 1 с. В результате реакции катализатор остается в химически неизменном состоянии и не расходуется, т. е. участие катализатора в реакции не отражается общим стехиометрическим уравнением. Однако физические его изменения возможны. Например, кристаллический МпОг в процессе каталитического разложения хлората калия КСЮз превращается в мелкодисперный порошок. Физически изменяется и платина при каталитическом окислении диоксида [c.232]

    Отвечающие четырехвалентным элементам диоксиды ЭО2 известны для всех платиновых металлов (частично —лищь в форме гидратов). Другие производные этой валентности особенно характерны для самой платины. Красно-коричневая Pt(0H)4 растворима и в кислотах и в сильных щелочах, причем продуктами взаимодействия являются, как правило, не простые соли, а комплексные соединения. Например, взаимодействие с NaOH и НС1 протекает по схемам [c.451]

    Примером гетерогенной каталитической реакции может быть окисление диоксида серы кислородом в присутствии платины или Л/гОг. Слабым катализатором этого процесса является также РегОз. Поэтому при сжигании серы на железной ложечке, кроме бесцветного диоксида еры, появляется белый дымок оксида серы (VI). По этой же причине при обжиге пирита 4Ре5 2 + 1 Юа = 850а + 2РеаОз [c.171]

    Получение триоксида серы. Вторая стадия производства серной кислоты — окисление диоксида серы кислородом воздуха до триоксида. В настоящее время этот процесс осуществляется контактным способом окисление проводят при температуре 400— 600°С в присутствии катализаторов [платины, оксида ванадия (V) V2OS или оксида железа (HI) РеаОз]. Этот процесс экзотермический. Выделяющаяся теплота используется для подогрева обжигового газа. [c.140]

    Своеобразным катодным материалом является диоксид серы ЗОг, который насыщает органический электролит и находится в непосредственном контакте с литиевым анодом. При этом на поверхности анода образуется пленка Li2S204, обладающая свойствами полупроницаемой мембраны, не препятствующей ионизации лития (аналогично действию пленки ЬЮН на литии в водных электролитах, стр. 81). Катодным токоотводом служит материал с развитой поверхностью (платинированная платина, графит, сажа). [c.83]

    Достаточно высокие, но все же ниже, чем на платиновых или платино-титановых анодах, выходы перхлората по току могут быть достигнуты и на анодах из электроосажденного диоксида свинца. [c.187]

    Потери платины. Предполагают, что п процессе окисления аммиака при повытеиных температурах образуется летучий диоксид платины. Есть предноложенне также, что потери плагины образуются за счет механического отрыва ее частиц. [c.145]

    В водном растворе разряд карбокснлатов возможен лишь на анодах из гладкой платины и иридия или из углерода. Если структура кислоты такова, что может образоваться продукт сочетания, то для получения его с оптимальным выходом следует выбрать анод нз платины, иридия или, в некоторых случаях, из стеклоуглерода. На аноде из графита или пористого уь-зерода многие карбоксилаты дают продукты, источником которых почти исключительно служит ион карбения [19—23]. Однако описаны и исключения нз этого правила [24, 25]. В неводиых растворителях роль материала электрода пе так велика, хотя и в этих случаях использование угольных анодов способствует механизму с участием иона карбения, а использование платины —радикальному механизму [19, 23]. Диоксид свинца, по-видимому, ведет себя при окислении ацетата аналогично углероду [26], но необходимы дополнительные эксперименты для того, чтобы выявить, насколько общим является это поведение [27]. Реакция Кольбе может Сыть проведена на стеклоуглероде и спеченном угле [26, 28] Для пиролитического углерода распределение продуктов зависит от тою, проводится ли реакция на гранях илн плоскостях электрода [28] это подтверждает, что раА.1ичия связаны с адсорбционными свойствами. [c.426]


Смотреть страницы где упоминается термин Платина диоксид: [c.427]    [c.428]    [c.94]    [c.272]    [c.299]    [c.297]    [c.332]    [c.346]    [c.346]    [c.396]    [c.397]    [c.145]    [c.205]   
Химический энциклопедический словарь (1983) -- [ c.448 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Диоксид



© 2025 chem21.info Реклама на сайте