Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литий ионизация

    Такие реакции имеют большое значение и, возможно, ответственны за нуклеофильную активность литийорганических соединений. В смешанных агрегатах с алкоголятами или другими солями лития ионизация по типу [c.476]

    Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит, в кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи между всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации — валентные электроны слабо удерживаются в атоме, т. е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет также электрическую проводимость металла. [c.89]


    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    Почему первый потенциал ионизации атома бериллия (9,32 В) выше, чем у атома лития (5,39 Б), а второй потенциал ионизации (18,21 В) ниже, чем у атома лития (75,64 В)  [c.241]

    Во внешнем электронном слое атомы щелочных металлов имеют по одному электрону. Во втором снаружи электронном слое у атома лития содержатся два электрона, а у атомов остальных щелочных металлов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы этих элементов довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (см. табл. 30). Образующиеся при этом [c.561]

    Щелочные металлы принадлежат к числу наиболее активных в химическом отношении элементов. Их высокая химическая активность обусловлена в первую очередь низкими значениями энергии ионизации их атомов — легкостью отдачи ими валентных электронов. При этом энергия ионизации уменьшается при переходе от лития к цезию (табл. 30). Ясно, что химическая активность прн этом возрастает. [c.563]

    Вычислите третью энергию ионизации для атома лития. [c.350]

    Атом лития состоит из ядра с зарядом + 3 (Z = 3) и трех электронов. Первая энергия ионизации, ЭИ(, атома с несколькими электронами представляет собой энергию, необходимую для удаления одного электрона. Для лития эта энергия отвечает процессу [c.350]

    Энергия, необходимая для удаления электрона из однозарядного положительного иона (в нашем случае Li ), называется второй энергией ионизации , ЭИз- Для лития эта энергия соответствует процессу [c.350]

    Наконец, третья энергия ионизации, ЭИ3, в случае лития соответствует удалению последнего оставшегося электрона из иона Li" . Поскольку у лития Z = 3, нетрудно найти, что [c.350]

    Каждый из этих металлов имеет способность легко терять электроны и становиться окисленным в растворе. И наоборот, их ионы восстанавливаются с трудом, например ионы калия имеют восстановительный потенциал - 2,92 В. Литий теряет электроны в растворе легче, чем Сз, несмотря на более высокую энергию ионизации Ь], потому что маленький размер иона Ь] позволяет молекулам воды ближе подойти к центру этого иона это обусловливает очень высокую устойчивость гидратированного иона. [c.433]


    Значения ф° для бериллия и его аналогов близки к значениям ф° для элементов подгруппы лития, хотя энергии ионизации атомов элементов подгруппы ПА значительно больше, чем для щелочных металлов, ио это различие в энергиях ионизации компенсируется более высокими энергиями гидратации катионов элементов подгруппы ПА, [c.312]

    Если проследить, как изменяются значения ионизационных потенциалов при постепенном усложнении атома, т. е. при переходе от первых элементов периодической системы к последующим, то можно видеть, что впервые скачкообразное повышение потенциала появляется у лития. Далее такой же скачок наблюдается у всех элементов периодической системы при отрыве электронов, следующих за первой электронной парой. Это показывает, что первая электронная пара в атомах этих элементов находится ближе к ядру, чем последующие электроны. В табл. 1 потенциалы ионизации, отвечающие отрыву электронов до первой электронной пары, отделены от остальных вертикальными жирными линиями. [c.34]

    Реакции, протекающие с изменением валентного состояния компонентов, при высоких температурах могут проявлять меньшую однотипность, так как энергии перехода в возбужденные состояния соединений аналогичных элементов для разных валентных состояний неодинаковы. Так, энергии возбуждения атомов элементов подгруппы лития различаются значительно. Поэтому реакции диссоциации двухатомных молекул этих элементов на свободные атомы (или процессы ионизации атомов), являющиеся формально однотипными, будут различаться сильнее, чем обычные однотипные реакции. Конечно, на термодинамические параметры процессов при высокой, температуре может оказывать искажающее влияние не только возбуждение атомов, но и возбуждение молекул, в частности колебательных уровней в них. [c.181]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4 51/2—4 Р°1/2.3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий ( в) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1—2 мкг//мл. Присутствие [c.40]

    В электрохимическом ряду напряжений металлов все щелочные металлы стоят значительно левее водорода, причем с увеличением атомного номера (и уменьшением потенциала ионизации) электрохимическая активность металлов увеличивается. Исключение составляет литий — расположение на левом фланге электрохимического ряда напряжений металлов обусловлено исключительно высокой энергией гидратации лития, максимальной среди металлов. [c.144]

    Энтальпия гидратации ионов лития существенно больше, чем ионов калия, и перекрывает различия в энтальпии атомизации и ионизации (рис. 93). Поэтому литий обладает в водном растворе большей восстановительной способностью, чем калий. [c.173]

    Стандартные потенциалы ряда редокс-систем, расположенные в порядке увеличения потенциала, приведены в табл. В. 14. Потенциалы определены относительно стандартного водородного электрода, потенциал которого принято считать равным нулю. Следовательно, стандартный потенциал системы Ре/Ре + (еР = —0,44 В) равен э.д. с. гальванического элемента, составленного из водородного электрода и полуэлемента Ре/Ре2 в стандартном состоянии. Знак — означает, что железный электрод является отрицательным полюсом рассмотренного элемента. Положение металлов в табл. В.14 соответствует их способности переходить в раствор в виде гидратированных ионов. В стандартном потенциале отражается не только энергия решетки металла и энергия ионизации атома металла, но-также и энтальпия и энтропия гидратации ионов. Гидратацией ионов объясняется, в частности, высокое отрицательное значение стандартного потенциала лития. [c.413]

    При сравнении металлов, занимающих то или иное положение в периодической системе, за меру их химической активности — восстановительной способности — принимается величина энергии ионизации свободных атомов. Действительно, при переходе, например, сверху вниз по главной подгруппе I группы периодической системы энергия ионизации атомов уменьшается, что связано с увеличением их радиусов (т. е. с большим удалением внешних электронов от ядра) и с возрастающим экранированием положительного заряда ядра промежуточными электронными оболочками. Поэтому атомы калия проявляют большую химическую активность — обладают более сильными восстановительными свойствами, чем атомы натрия, а атомы натрия — большую активность, чем атомы лития. [c.329]


    Таким образом, в ходе рассматриваемого превращения затрачивается энергия на атомизацию и ионизацию и выделяется энергия при гидратации. Чем меньше будет суммарная затрата энергии, тем легче будет осуществляться весь процесс и тем ближе к началу ряда напряжений будет располагаться данный металл. Но из трех слагаемых общего баланса энергии только одно — энергия ионизации — непосредственно определяется положением металла в периодической системе. Следовательно, нет оснований ожидать, что взаимное положение тех или иных металлов в ряду напряжений всегда будет соответствовать их положению в периодической системе. Так, для лития суммарная затрата энергии оказывается меньшей, чем для калия, и литий стоит в ряду напряжений раньше калия. [c.329]

    На внещней электронной оболочке атомы щелочных элементов имеют по одному электрону. На второй снаружи электронной оболочке у атома лития содержатся два электрона, а у атомов остальных щелочных элементов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (табл. 14.2). Образующиеся при этом однозарядные положительные ионы имеют устойчивую электронную структуру соответствующего благородного газа (ион лития — структуру атома гелия, ион натрия — атома неона и т. д.). Легкость отдачи внешних электронов характеризует рассматриваемые элементы как наиболее типичные представители металлов металлические свойства выражены у щелочных элементов особенно резко. [c.382]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    В низкотемпературном пламени светильный газ — воздух атомные линии излучают щелочные металлы литий, натрий, калий, рубидий, цезий. Для определения калия используют излучение резонансного дублета 766,5 и 769,9 нм (4251/2—4 Р°1/2,3/2), расположенного на границе видимой и инфракрасной частей спектра. Потенциал возбуждения этих спектральных линий Ев) — 1,62 эВ. Факторы специфичности интерференционных фильтров калия по отношению к излучающим в этих условиях элементам достаточно высоки и достигают нескольких тысяч. Влияние состава анализируемого раствора на интенсивность излучения калия в большой степени зависит от его концентрации и температуры пламени. В пламени светильный газ — воздух ионизация атомов калия незначительно проявляется лишь при его низких концентрациях в растворе порядка 1-—2 мкг//мл. Присутствие 2—4 мкг/мл натрия в растворе, содержащем менее 2 мкг/мл калия, увеличивает интенсивность излучения калия. При более высоких концентрациях калия в растворе влиянием легко ионизующихся примесей можно пренебречь. Кислоты и анионы уменьшают интенсивность спектральных линий калия, причем наибольшее влияние оказывают фосфат-ионы. Предел обнаружения калия составляет 0,05 мкг/мл. [c.40]

    Из приведенного расчета видно, что в водном растворе на ионизацию лития затрачивается энергии меньше, чем на ионизацию калия, Т е. в таких условиях литий оказывается активнее калия. Аналогичным образом можно объяснить несоответствие в последовательности изменения активности в ряду напряжений и в группах и периодах для других металлов. [c.147]

    Как известно, для металлов характерна легкость отдачи электронов, т. е. низкие значения энергии ионизации. Сопоставим эти величины для водорода, лития и фтора  [c.159]

    Первые энергии ионизации атомов щелочных металлов составляют (в эВ) 5,39(и), 5,14(Ма), 4,34(К), 4,18(кЬ), 3,89(Сз). Энергии ионизации данных элементов имеют наиболее низкие значения. Это объясняется сильным экранированием заряда ядра внутренними электронными слоями, которые предшествуют внешнему электрону. Уменьшение энергии ионизации от лития к-цезию обусловлено возрастанием расстояния электрона от ядра по мере увеличения размера атомов. [c.46]

    Одинаковое строение не только внешнего, но и предшествующего электронного уровня (за исключением лития и бериллия) обусловливает ряд общих свойств (одинаковую степень окисления и однотипность соединений). Но с увеличением заряда ядра и числа электронов в атомах элементов периодической системы наблюдаются сверху вниз некоторые качественные различия между ними. В подгруппах сверху вниз увеличивается число квантовых уровней, а следовательно, и радиусы атомов, вследствие чего требуется меньше энергии на отрыв электрона, т. е. наблюдается уменьшение энергии ионизации. Поэтому от лития к францию, от бериллия к радию увеличивается способность атомов отдавать электроны, усиливаются металлические свойства. [c.76]

    Практическое уменьшение и уст[)анение ионизационных помех осуществляют добавлением к раство])у анализируемой пробы ионизационного буфера, представляющего собой избыток другого, легкоионизируемого металла. Так, при определении лития ионизация его атомов может быть подавлена внесением в анализируемый раствор избытка калия, который, являясь дополнительным [c.162]

    На рис. V, 4 показана зависимость теплоемкости (Ср) для частиц различного рода. Атомы инертных газов и ионы, отвечающие им по структуре, в пределах температур до 6000 К за немногими исключениями сохраняют постоянное значение Ср = = 4,97 кал/(К-моль). Частицы с другим строением электронных оболочек обладают обычно более низкими уровнями возбуждения. Их теплоемкость отклоняется от значения 4,97 кал/(К-моль) уже при более низких температурах. На рис. VI, 4 приведены некоторые характерные примеры таких частиц. Так, у атомов элементов подгруппы лития обнаруживаются в рассматриваемом пределе температур значительные отклонения Ср от указанного предельного значения, причем для Сз эти отклонения становятся заметными, начиная с 1500 К, для НЬ и К — с 1700 К, для N8 — с 2100 К и для Ь — с 1800 К. Это, естественно, приводит к усложнению зависимости от температуры и других термодинамических функций этих элементов. Поэтому процессы ионизации атомов Ы—Сз и процессы диссоциации на атомы двухатомных молекул этих элементов существенно отклоняются от однотипности уже при умеренно высоких температурах. Вещества неодиотипиые (например, Ыа, Мо, Ре, РЬ, 51) имеют различную по характеру зависимость теплоемкости от температуры. [c.174]

    Литий определяют эмиссионным методом по красной резонансной линии с длиной волны 670,0 нм. Так как энергия ионизации лития относительно высока, при определении этого элемента в меньшей степени сказывается влияние других щелочных элементов. Ехли фотометр не имеет литиевого светофильтра, то литий можно определять со светофильтром для определения кальция. [c.22]

    Электроотрицательность — это количественная характеристика способности атома в молекуле притягивать к себе электроны. Она равна полусумме энергии ионизации и сродства атома к электрону. Зависимость электроотрицательности от порядкового номера элемента носит периодический характер электроотрицательность возрастает внутри периода и уменьшается внутри группы периодической системы элементов. На практике пользуются относительными значениями электроотрицательности (ОЭО), принимая за единицу электроотрйцательность лития (табл. 10). [c.22]

    Малый атомный радиус бериллия (в сравнении с радиусом элементов-аналогов и лития), а также его более высокий потенциал ионизации придают ему слабо электроположительный характер. Так, практически во всех соединениях бериллия связи имеют в большей или меньшей степени ковалентный характер. На химические свойства бериллия значительно большее влияние, чем в случае магния, оказывает малый ионный радиус Бе +, который оценивается примерно в 0,03 нм. Так, соли бериллия имеют значительно более кислую реакцию, так как гид-.ратированный катион бериллия является кислотой (разд. 33.4.4) [Ве(Н,0)4]2+ [Ве(НаО)з(ОН)]+-Ь Н+ [c.602]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса. Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля, Поле, возникающее вблизи маленьких ионов лития, будет более си.пьным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ионы калия. [c.329]

    Теплота гидратации иона зависит от его заряда и радиуса. Тенденция металлов переходить в раствор выражена тем сильнее, чем меньше потенциал ионизации и чем больше теплота гидратации. Так, наибольшим стандартным потенциалом характеризуется литий — металл с малым потенциалом ионизации. Кроме того, ввиду незначительности радиуса иона лития он имеет сильное электрическое поле и поэтому энергично притягивает дипольные молекулы воды, что сопровождается значительным выделением тепла (гидратации). Литий, таким образом, наименее благородный металл. Наиболее благородные металлььрасполагаются в конце ряда напряжений.  [c.184]

    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    Будучи одновалентными, элементы подгруппы лития образуют оксиды типа Rj О (окись натрия NajO, окись калия К2О и др.), гидроксиды типа ROH (гидроокись натрия NaOH, гидроокись калия КОН и др.). Основной характер этих соединений усиливается от лития к францию вследствие уменьшения в том же направлении потенциала ионизации атомов этих элементов. Элементы этой подгруппы образуют сульфиды типа RaS (сульфид лития LI2S, сульфид натрия ЫзгЗ и др.), гидросульфиды RSH, хлориды R 1, бромиды RBr, соли кислородных кислот и т. д. [c.49]

    Второй период образует атомы от до Ne. В направлении — Ке растет эффективный заряд ядра, в связи с чем уменьшаются размеры атомов (см. Гшах), возрастает потенциал ионизации и осуществляется, начиная с В, переход к неметаллам. Потенциал ионизации отражает не только рост в ряду —Ке, но и особенности электронных конфигураций потенциал ионизации у бора ниже, чем у бериллия. Это указывает на упрочнение заполненных нодоболочек ( у бериллия). Более высокий потенциал ионизации азота по сравнению с кислородом указывает на повышенную прочность конфигурации р , в которой каждая орбиталь занята одним / -электроном. Аналогичные соотношения наблюдаются и в следующем периоде у соседей Mg—А1 и Р—5. У атомов второго периода отрыв электрона с внутреннего Ь -слоя требует такого высокого ПИ (75,62 эВ уже у лития), что в химических и оптических процес--сах участвуют только внешни электроны. Сродство к электрону в ряду Ы—Р имеет тенденцию к возрастанию. Но у берилжя оболочка заполнена, и сродство к электрону эндотермично так же, как и у гелия (1л ). Обладая самым высоким потенциалом ионизации ю всех неметаллов и высоким сродством к электрону, фтор является наиболее электроотрицательным элементом в периодической системе. Для атома неона СЭ (Ке)=—0,22 эВ. Оболочка з р атома Ке, электронный октет, характеризуется суммарным нулевым спином и нулевым орбитальным моментом (терм 5о). Все это, вместе с высоким потенциалом ионизации и отрицательным сродством к электрону, обусловливает инертность неона. Такая же з р конфигурация внешнего слоя характерна для вСех элементов нулевой группы. Исследования последних лет показывают, что 1 п, Хе,Кг и Аг дают химические соединения со фтором и кислородом. Очевидно, что з р конфигурация не влечет как непременное следствие химической инертности. Все атомы со спаренными электронами (терм о) — диамагниты (Не, Ве, Ке и т. д.). Конфигурации внешнего электронного слоя у атомов 2-го и 3-го периодов, стоящих в одних и тех же группах, одинаковы, чем объясняется близость химических свойств элементов, стоящих в одних и тех же группах (сравните Ка иЬ1 в табл. 5). Но наблюдается и различие элементы второго периода обладают постоянной валентностью, а третьего — переменной. Это связано с тем, что у атомов третьего периода есть вакантные -состояния в третьем квантовом слое, а во втором слое таких соединений нет. [c.62]

    Электроотрицательность. К рассматриваемой группе свойств относится и так называемая электроотрицательность. Это условная величина, характеризующая стремление данного атома к присоединению электронов при образовании химической связи. На практике используют различные шкалы электроотри- цательностей. Например, по Малликену она равна полусумме (сумме) потенциала ионизации I и сродства к электрону Е. В относительной шкале Полинга электроотрицательность лития принята за единицу (табл. 8). [c.71]


Смотреть страницы где упоминается термин Литий ионизация: [c.292]    [c.293]    [c.434]    [c.435]    [c.138]    [c.587]    [c.380]    [c.138]    [c.147]   
Неорганическая химия Том 1 (1970) -- [ c.152 ]




ПОИСК







© 2025 chem21.info Реклама на сайте