Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диоксид углерода взаимодействие

    При взаимодействии диоксида углерода с углеродом (доменный процесс, газификация твердого топлива) при < = 1000 °С и Р = 0,3 МПа в равновесном газе содержится 17% (об.) СОг. Определить содержание СОг в равновесном газе при 0,2 МПа. [c.43]

    Процессы химической абсорбции основаны на химическом взаимодействии сероводорода и диоксида углерода с активной частью абсорбента. [c.13]


    Адсорбционные методы очистки газа основаны на селективном извлечении примесей твердыми поглотителями - адсорбентами. При этом извлекаемый компонент может вступать в химическое взаимодействие с адсорбентом (химическая адсорбция) или удерживаться физическими силами взаимодействия (физическая адсорбция). Химическая адсорбция не нашла широкого промышленного применения в газопереработке из-за сложностей, возникающих на стадии регенерации отработанного адсорбента. Физическая адсорбция отличается легкостью регенерации адсорбента и широко используется в промышленных процессах для тонкой очистки газов от сероводорода, диоксида углерода, сераорганических соединений и влаги. В качестве адсорбентов наибольшее распространение нашли активированные угли и синтетические цеолиты. [c.15]

    Скорость окисления оксида углерода повышается в присутствии небольших количеств влаги. Скорость реакции окисления углерода больше, чем скорость диффузии кислорода, и наоборот, скорость реакции взаимодействия углерода с диоксидом углерода меньше скорости диффузии кислорода. Поскольку основой является реакция окисления, при уменьшении толщины пограничного слоя увеличивается скорость горения. Это и происходит в условня.ч пожара при увеличении скорости воздушных потоков, омывающих поверхности горящих веществ. [c.141]

    Распределение кислорода в реакциях окисления. Взаимодействующий с нефтяным сырьем кислород воздуха расходуется в различных реакциях окисления. Часть кислорода образует воду и диоксид углерода, остальное количество химически связывается компонентами сырья содержание кислорода в битуме составляет 1—2% (масс.). [c.44]

    Натрий и калий бурно взаимодействуют с водой с выделение , большого количества тепла и водорода, воспламеняющегося с-взрывом. В связи с этим недопустимо их взаимодействие с водо . и водосодержащими растворами, а также с твердым диоксидом углерода и с хлорсодержащими органическими соединения.м)  [c.29]

    Какова формула соединения, образованного при взаимодействии углерода и серы Учтите, что углерод и кислород образуют диоксид углерода СО2. [c.127]

    Диоксид углерода взаимодействует с аммиако.м. Конечным веществом взаимодействия СО2 и NH3 под высоким давлением и при нагревании ( 180"С) является карбамид — мочевина ОС—(NH2)2. Подобный синтетический (технический) способ получения мочевины предложен отечественным химиком — А. И. Базаровым (1868). [c.290]


    Основными компонентами природного газа являются метан, сероводород, диоксид углерода. Данные о некоторых реакциях СО2, получении водорода и синтез-газа из СН4, взаимодействии метана с насыщенными (диспропорционирование) и ненасыщенными (крекинг) углеводородами приведены выше. Ниже рассмотрены термодинамические характеристики процесса утилизации сероводорода — процесса Клауса и синтезов на основе метана. [c.349]

    Для очистки нефтяных и природных газов от сероводорода, диоксида углерода и других серо- и кислородсодержащих соединений применяют абсорбционные процессы, которые в зависимости от взаимодействия этих соединений с растворителями (абсорбентами) подразделяются на частные процессы физической и химической абсорбции. [c.5]

    Реакция между моноксидом углерода и водяным паром проходит с образованием диоксида углерода и водорода. Диоксид углерода взаимодействует с едким натром по таким уравнениям  [c.83]

    Диоксид углерода взаимодействует со щелочами с образованием карбонатов, в результате в пробирке образуется вакуум. Внешнее давление воздуха прочно прижимает пробирку к пальцу. [c.32]

    Пероксид нат])ия применяется для отбелки тканей, шерсти, шелка и т. п. Важное значение имеет реакция взаимодействия пероксида натрия с диоксидом углерода  [c.566]

    Выполнение. Наполненный диоксидом углерода цилиндр опустить горлом в ванну, открыть под жидкостью. Диоксид углерода взаимодействует со щелочью, и жидкость заполняет цилиндр  [c.55]

    Так, пероксиды щелочноземельных и щелочных металлов интенсивно взаимодействуют с диоксидом углерода и влагой воздуха, выделяя при этом кислород, а при контакте с органическими [c.38]

    Метод углекислотной газификации топлива в кипящем слое разработан в Институте нефтехимического синтеза (ИНХС). В этом методе основным реагентом является диоксид углерода, взаимодействующий с углеродом топлива по реакции [c.130]

    Образование карбонатов происходит, по-видимому, по двум направлениям за счет взаимодействия металлов с диоксидом углерода, растворенным в водных конденсатах [c.289]

    Охарактеризовать физические и химические свойства диоксида углерода и области его практического применения. Написать уравнения реакций взаимодействия СО2 с раствором щелочи при недостатке и при избытке СО2. [c.235]

    Последовательность действий Сколько литров диоксида углерода выделится при взаимодействии соляной кислоты с 50 г карбоната кальция  [c.123]

    Для определения мест утечек диоксида углерода, хлора, хлористого водорода используют аммиак, при взаимодействии с которым образуется углекислый или хлористый аммоний, выделяющийся в виде белого дыма. [c.86]

    В тех случаях, когда охлаждаемое вещество не взаимодействует с диоксидом углерода, в криостаты загружают так называемый сухой лед, являющийся твердым диоксидом углерода. Сухой лед имеет температуру —78 °С, испаряется медленно. В том случае, когда стенки криостата имеют хорошую изоляцию, одной порции сухого льда хватает на несколько дней. [c.40]

    Однако до 700 °С реакциями непосредственного взаимодействия углерода с парами воды и диоксидом углерода можно пренебречь и характеризовать окисление только процессами взаимодействия с кислородом и доокисления оксида углерода в газовой фазе [61]. В то же время необходимо отметить, что согласно представлениям, развиваемым в работе [62], при температурах ниже 750 °С скорости окисления углерода в сухой среде весьма малы. [c.21]

    Кислород из газовой фазы вступает во взаимодействие с углеродом поверхности коксовой глобулы, образуя кислород-углеродный комплекс. В дальнейшем под действием молекул кислорода этот комплекс может разрушаться с выделением диоксида углерода. Кроме того, он способен разрушаться без участия кислорода (с выделением монооксида углерода). Это предположение подтверждено экспериментально [29]. Учитывается также способность кислорода проникать внутрь коксовой глобулы вследствие диффузии. Водород поверхности окисляется до воды, и при этом образуется кислород-углеродный комплекс. Водород в основном расположен на поверхности частиц кокса. Однако данные о распределении Н2 в глубину частиц отсутствуют, поэтому неравномерное распределение заменено стадией диффузии водорода по частице. [c.32]

    Решение. Конверсия метана природного газа — метод производства во-.дорода и азотоводородной смеси при синтезе аммиака. Это взаимодействие метана природного газа с водяным паром, диоксидом углерода и кислородом реакции (1) —(4)] осуществляют чаще всего каталитически, в трубчатых илв шахтных конверторах. Реакции (1) и (2) эндотермичны и процесс конверсии метана в целом происходит с поглощением теплоты. Необходимая теплота подводится Б конвертор путем сжигания части природного газа до Oj и HjO, а также по реакциям (3) и (4), идущим с выделением теплоты. Одновременно с метаном конвертируются до СО и Нг высшие углеводороды, содержащиеся в природном газе СзНб. СзНа. iHio. [c.41]


    Решение. Из уравнения реакции хлорирования оксида алюминия (VII. 93) следует, что при взаимодействии 6 моль хлора образуется 7 моль хлорида алюминия и диоксида углерода. Учитывая это обстоятельство, для упрощения расчета полагаем, что хлорирование протекает практически без изменения объема газовой фазы. [c.191]

    Реакция конверсии водяного газа. Реакция конверсии водяного газа была обнаружена как побочная реакция при кар-бонилировании метанола на родиевом катализаторе уже в ходе лабораторных исследований и разработки процесса [4, 16]. Она состоит во взаимодействии монооксида углерода и воды с образованием водорода и диоксида углерода. С умеренными скоростями она также протекает в растворе уксусной кислоты в отсутствие активных метильных групп в каталитической системе при условиях, близких к условиям карбонилирования метанола. Сотрудники Рочестерского университета наблюдали протекание этой реакции с измеримыми скоростями на данной каталитической системе при низкой температуре и давлении ниже атмосферного [17, 18]. Конверсия водяного газа — наиболее глубоко исследованная из побочных реакций, сопровождающих процесс карбонилирования метанола на родиевом катализаторе [19, 20]. [c.298]

    В ХТС крупнотоннажного производства карбамида первичный техиологи-ческий отказ промывной колонны, проявляющийся в нарушении заданного режима орошения жидким аммиаком, приводит к неполному поглощению диоксида углерода в верхней части промывной колонны. Непоглощеиный диоксид углерода, взаимодействуя с жидким аммиаком в буферной емкости и далее в танке аммиака, образует карбонаты аммония. Эти соли в виде твердых частиц забивают теплообменные трубки в конденсаторах аммиака, вызывая вторичный технологический отказ конденсаторов. Кроме того, образовавшиеся карбонаты приводят к абразивному износу и даже к заклиниванию плунжера аммиачного насоса высокого давления, вызывая тем самым возникновение вторичного механического отказа насоса. [c.27]

    Прежний метод их синтеза состоял во взаимодействии гликолей с фосгеном. Более дешевый и перспективный путь получения алкиленкарбонатов открыт сравнительно недавно. Оказалось, что (х-оксиды реагируют с диоксидом углерода с расширением цикла и образованием циклических карбонатов 1,2-гликолей. Реакция катализируется бромидами, имеет нулевой порядок по СО2 и, по-видимому, протекает по такому механизму [c.290]

    На эффективность процесса абсорбции фенолов из пара оказывает влияние наличие примесей в щелочно-фенолятном растворе. Присутствие аммиака также ухудшает процесс обесфеноливания пара. Свободный сероводород и диоксид углерода взаимодействуют с NaOH, вследствие чего содержание свободной щелочи в щелочном растворе уменьшается и ухудшается извлечение фенолов. [c.239]

    На оксидно-марганцевых катализаторах углекислотной конверсии метана было изучено раздельное восстановление катализатора метаном и его реокисление СО2 [211, 215]. Измеренные скорости образования водорода в условиях стационарной каталитической реакции на Са-Мп-0/А120з (310 моль/г-ч) и при восстановительной реакции СН4 с катализатором (1,7-10 моль/г ч) были сопоставимы. Скорость же взаимодействия СО2 с восстановленным катализатором (реокисление катализатора) значительно превышала скорость его восстановления. Таким образом, лимитирующей стадией является, по-видимому, крекинг метана с образованием углеродистых отложений, которые затем быстро окисляются при взаимодействии с водой или с СО2 (обратная реакция Будуара). Присутствие оксида марганца в катализаторе увеличивает скорость окисления углерода на поверхности. Диоксид углерода взаимодействует с МпО и образует поверхностный карбонат, который и реагирует с углеродом  [c.77]

    Электрохимическая коррозия — это взаимодействие металла с коррозионной средой (электролитом), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от величины электродного потенциала. Электрохимическая коррозия протекает только при контакте поверхности металла с электролитом, т. е. с токопроводящей средой (водными растворами солей, кислот, щелочей). Практически поверхность любого металла в ат осфе-ре покрывается тонкой водной пленкой различной толщины в зависимости от температуры и влажности воздуха, а также от температуры металлической поверхности. В этой пленке растворяются содержащиеся в воздухе газы (диоксид углерода, оксиды азота и серы, сероводород и др.) и мелкие частицы (пыль) различных солей, что приводит к образованию электролита. [c.279]

    Влияние природы хлорагента и условий хлорирования на изомеризующую активность катализатора. Взаимодействие хлорорганического соединения, например четыреххлористого углерода, с кислородсодержащими группами на поверхности оксида алюминия при 250—300 °С в среде газа-носителя выражается суммой химических реакщ1Й, приводящих к образованию фосгена, диоксида углерода, хлороводорода и воды. За счет замещения ионов кислорода на хлор масса катализатора при хлорировании увеличивается. [c.67]

    Если кислота и осиоваине, образующие соль, не только слабые электролиты, ио и малорастворимы, или неустойчивы и разлагаются с образованием летучих продуктов, то гидролиз солн часто протекает необратимо, т. е. сопровождается полным разложением соли. Так, при взаимодействии в растворе соли алюминия, например А1С1з, с карбонатом натрия выпадает осадок гидроксида алюминия и выделяется диоксид углерода [c.263]

    Концентр)1рован 1ЫЙ раствор хлорида натрия насыщают ам-маком, а з тем пропускают в него иод давлением диоксид угле-)да, нолу заемый обжигом известняка. При взаимодействии ам-иака, диоксида углерода и воды образуется гидрокарбонат и мои и я [c.441]

    Это уравнение скщует понимать таким образом, что одна молекула глюкозы взаимодействует с 6 молекулами кислорода, образуя 6 молекул диоксида углерода и б молекул воды. Предположим, что имеется 10 молекул глюкозы и 100 молекул кислорода. Какое вещество в этом случае в недостатке  [c.255]

    Хи.пическая пена образуется при взаимодействии карбоната или бикарбоната натрия с кислотой в присутствии пенообразо-] ателя. Практически такую пену получают в эжекторных переносные приборах (пеногенераторах) из пенообразующего порошка и воды (рис. 34.4). Пенообразующий порошок состоит из сухих солей (сернокислого алюминия, бикарбоната натрия) и лакричного экстракта или другого пенообразующего вещества. При взаимодействии с водой сернокислый алюминий (или другие се Нокислые солп), бикарбонат натрия и пенообразователь растворяются и немедленно реагируют с образованием диоксида углерода. [c.443]

    Тяжелая часть нефти представляет собой сложную смесь неидентифицированных углеводородов и гетеросоединений самого разнообразного строения. Для решения практических задач определяют содержание отдельных классов или групп веществ асфальтенов, силикагелевых смол и масел. Среди последних различают соединения парафиновой, нафтеновой и ароматической основы. Кислород воздуха, взаимодействующий с нефтяным сырьем, расходуется в различных реакциях окисления. Часть кислорода образует воду и диоксид углерода, другая — химически связывается компонентами сырья. С повышением температуры окисления увеличивается доля кислорода, расходуемого на образование воды. В целом процесс окисления характеризуется переходом масел в смолы и смол в асфальтены. В масляной части наибольшая скорость окисления наблюдается у тяжелых ароматических углеводородов, в то время как парафино-нафтеновая группа углеводородов почти не затрагивается. [c.287]

    Полученный указанным способом водород пригоден для реакций гидрирования и широко используется на небольших заводах. В начале второй мировой войны таким водородом наполняли аэростаты противосамолетных заграждений. После прекращения использования аэростатов в ходе второй мировой войны в установках для получения водорода стали получать диоксид углерода по приведенной выше реакции взаимодействия СО и воды. Диоксид углерода под давлением использовали в огнетушителях в авиации США. [c.150]

    MO этого, в смоле в небольших количествах содержатся бензольные углеводороды бензол, толуол, ксилолы около 50—60% от массы смолы составляют высококипяш,ие продукты с большой молекулярной массой. Смола подвергается разгонке, а затем из фракции ректификацией выделяются бензол и его гомологи, кристаллизацией— нафталин и антрацен. Фенол получается при обработке фракций раствором едкого натра с образованием фенолята натрия eHsONa, который при дальнейшем взаимодействии с диоксидом углерода дает фенол. Пиридиновые основания удаляются из фракций промывкой разбавленной серной кислотой. Остаток после перегонки смолы — каменноугольный пек используется для изготовления электродов для электролизеров и электрических печей, в дорожном строительстве как материал для изоляции электросетей и подземных трубопроводов. [c.46]


Смотреть страницы где упоминается термин Диоксид углерода взаимодействие: [c.189]    [c.47]    [c.49]    [c.115]    [c.442]    [c.517]    [c.638]    [c.256]    [c.259]   
Справочник азотчика Издание 2 (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие диоксида углерода с водными растворами щелочей

Выделение хлора при взаимодействии озона с раствором хлорида натрия в присутствии диоксида углерода Лунин, А. В. Леванов. И. В. Кусков, А. В. Зосимов, Э. Е. Антипенко

Диоксид

Диоксид углерода

Диоксид углерода взаимодействие с водой



© 2025 chem21.info Реклама на сайте